Kidney Glycolysis as the Mammalian Phosphate Sensor
肾糖酵解作为哺乳动物磷酸盐传感器
基本信息
- 批准号:10533460
- 负责人:
- 金额:$ 48.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimalsAttenuatedBiochemicalBiologyBloodBone DiseasesCellsChronicCollaborationsCoupledDataDietDiseaseEnergy MetabolismEnzymesFastingGluconeogenesisGlycerol-3-Phosphate DehydrogenaseGlycolysisGoalsHomeostasisHormonesHumanHuman BiologyHypoparathyroidismIn VitroIntestinesIsotope LabelingKidneyKidney DiseasesKnowledgeLaboratoriesLifeLipidsMagnetic Resonance ImagingMediatingMetabolic acidosisMetabolismMusNucleic AcidsOralOrganPharmacologyPhysiologic calcificationPhysiologicalPhysiologyPlayPositron-Emission TomographyProcessProductionProximal Kidney TubulesReactionRoleSignal TransductionSodiumSpecificityStimulusSystemTestingTissuesTriglyceridesTubular formationVascular DiseasesVascular calcificationalpha-glycerophosphoric acidbasebody sensebonebone healthbone losscardiovascular healthdietaryexperimental studyfibroblast growth factor 23fluorodeoxyglucosefollow-uphuman diseasein vivoinhibitorinorganic phosphatekidney metabolismknockout animalmetabolic imagingmetabolomicsnovelpreventrenal ischemiasensorsodium-phosphate cotransporter proteinsuptake
项目摘要
ABSTRACT
Phosphate (Pi) is essential for life, playing fundamental roles in bone mineralization, cell signaling, and energy
metabolism. However, how Pi levels are detected is unknown, representing a significant gap in knowledge in
human biology. The bone-derived hormone FGF23 responds to elevated Pi by reducing kidney Pi reabsorption
and 1,25(OH)2D production, but Pi does not directly stimulate bone FGF23 production and the intermediate
steps between Pi excess and FGF23 synthesis have remained obscure. Recently, we identified a kidney-to-
bone signaling axis whereby kidney-derived glycerol-3-phosphate (G-3-P), a byproduct of glycolysis, circulates
to bone and triggers FGF23 production. In preliminary data, we find that Pi administration (in fed mice) triggers
an acute increase in glycolysis and G-3-P production in the kidney, with no change observed in other organs.
Here, we advance the central hypothesis that kidney proximal tubular cell glycolysis is the mammalian
phosphate sensor, upstream of G-3-P and FGF23. Aim 1 will determine the role of glycolysis and
gluconeogenesis in Pi-stimulated G-3-P production. We will test the hypothesis that Pi-stimulated kidney G-3-P
production occurs in the fed state, but is attenuated under gluconeogenic conditions; we will examine two
physiologically relevant gluconeogenic stimuli, fasting and metabolic acidosis. In addition, we will show that
glycolysis is required for Pi-stimulated G-3-P using isotope labeling and inhibitors of glycolysis,
gluconeogenesis, and triglyceride synthesis. Aim 2 will establish the role of glycerol-3-phosphate
dehydrogenase 1 (Gpd1), the enzyme that catalyzes G-3-P synthesis, in systemic Pi homeostasis. Using a
Gpd1 knockout animal generated in our laboratory, we will test the hypothesis that Gpd1 mediated G-3-P and
FGF23 production is required to prevent hyperphosphatemia, vascular calcification, and bone loss with chronic
dietary Pi loading; we will compare 0.6%, 1.2%, and 2% Pi diets and assess the role of Gpd1 with or without
induced hypoparathyroidism. Further, we will assess whether exogenous G-3-P can rescue the deleterious
effects of Gpd1 deficiency on Pi homeostasis. Aim 3 will demonstrate that the sodium-dependent cotransporter
Npt2a confers kidney specificity to glycolytic Pi sensing. We will test the hypothesis that Pi-stimulated
glycolysis in the kidney requires Npt2a, as assessed by 18F-FDG PET/MRI and metabolomic profiling; we will
also consider intestinal Pi uptake in a comparison of i.v. versus oral Pi administration. In vitro, we will test
whether the introduction of Npt2a to cells without basal Npt2a/c expression confers Pi-responsive glycolysis
and G-3-P production, as observed in primary human and mouse kidney proximal tubule cells. If successful,
these studies will identify a new mammalian sensor, with broad implications for human biology and disease,
and will endorse new pharmacologic targets for treating disorders of phosphate homeostasis. Finally, this
proposal will be executed by a team with a track record of collaboration, spanning expertise in kidney
metabolism, Pi and FGF23, bone biology, and metabolic imaging.
抽象的
磷酸盐 (Pi) 对生命至关重要,在骨矿化、细胞信号传导和能量方面发挥着重要作用
代谢。然而,如何检测 Pi 水平尚不清楚,这表明在
人类生物学。骨源性激素 FGF23 通过减少肾脏 Pi 重吸收来应对 Pi 升高
和 1,25(OH)2D 的产生,但 Pi 不会直接刺激骨 FGF23 的产生和中间体
Pi 过量和 FGF23 合成之间的步骤仍然不清楚。最近,我们发现了一种肾脏到
骨信号轴,肾源性 3-磷酸甘油 (G-3-P)(糖酵解的副产物)通过该轴循环
进入骨骼并触发 FGF23 的产生。在初步数据中,我们发现 Pi 给药(在喂食的小鼠中)会触发
肾脏中糖酵解和 G-3-P 产生急剧增加,而其他器官没有观察到变化。
在这里,我们提出了一个中心假设:肾近端肾小管细胞糖酵解是哺乳动物的糖酵解过程。
磷酸盐传感器,G-3-P 和 FGF23 的上游。目标 1 将确定糖酵解的作用和
Pi 刺激 G-3-P 生产中的糖异生。我们将检验 Pi 刺激肾脏 G-3-P 的假设
生产发生在进食状态下,但在糖异生条件下减弱;我们将检查两个
生理相关的糖异生刺激、禁食和代谢性酸中毒。此外,我们将证明
使用同位素标记和糖酵解抑制剂,Pi 刺激的 G-3-P 需要糖酵解,
糖异生和甘油三酯合成。目标 2 将确定 3-磷酸甘油的作用
脱氢酶 1 (Gpd1) 是一种在全身 Pi 稳态中催化 G-3-P 合成的酶。使用
我们实验室生成了 Gpd1 敲除动物,我们将测试 Gpd1 介导 G-3-P 和
FGF23 的产生对于预防慢性疾病引起的高磷血症、血管钙化和骨质流失是必需的。
膳食Pi负荷;我们将比较 0.6%、1.2% 和 2% Pi 饮食并评估 Gpd1 有或没有的作用
诱发甲状旁腺功能减退症。此外,我们将评估外源性 G-3-P 是否可以拯救有害物质
Gpd1 缺乏对 Pi 稳态的影响。目标 3 将证明钠依赖性协同转运蛋白
Npt2a 赋予糖酵解 Pi 传感的肾脏特异性。我们将检验 Pi 刺激的假设
通过 18F-FDG PET/MRI 和代谢组学分析评估,肾脏中的糖酵解需要 Npt2a;我们将
在比较静脉注射时还应考虑肠道 Pi 的吸收。与口服 Pi 给药相比。在体外,我们将测试
将 Npt2a 引入没有基础 Npt2a/c 表达的细胞中是否会产生 Pi 响应性糖酵解
和 G-3-P 的产生,如在原代人和小鼠肾近曲小管细胞中观察到的。如果成功的话,
这些研究将确定一种新的哺乳动物传感器,对人类生物学和疾病具有广泛的影响,
并将认可治疗磷酸盐稳态紊乱的新药理学目标。最后,这个
该提案将由具有合作记录的团队执行,涵盖肾脏领域的专业知识
代谢、Pi 和 FGF23、骨生物学和代谢成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EUGENE P. RHEE其他文献
EUGENE P. RHEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EUGENE P. RHEE', 18)}}的其他基金
Kidney Glycolysis as the Mammalian Phosphate Sensor
肾糖酵解作为哺乳动物磷酸盐传感器
- 批准号:
10705114 - 财政年份:2022
- 资助金额:
$ 48.18万 - 项目类别:
Metabolomics of Uremic Symptoms in Dialysis Patients
透析患者尿毒症症状的代谢组学
- 批准号:
9768580 - 财政年份:2018
- 资助金额:
$ 48.18万 - 项目类别:
Metabolomics of Uremic Symptoms in Dialysis Patients
透析患者尿毒症症状的代谢组学
- 批准号:
10604245 - 财政年份:2018
- 资助金额:
$ 48.18万 - 项目类别:
Metabolite Profiling and Cardiovascular Mortality in End-stage Renal Disease
终末期肾病的代谢分析和心血管死亡率
- 批准号:
8190095 - 财政年份:2011
- 资助金额:
$ 48.18万 - 项目类别:
Metabolite Profiling and Cardiovascular Mortality in End-stage Renal Disease
终末期肾病的代谢分析和心血管死亡率
- 批准号:
8303306 - 财政年份:2011
- 资助金额:
$ 48.18万 - 项目类别:
Metabolite Profiling and Cardiovascular Mortality in End-stage Renal Disease
终末期肾病的代谢分析和心血管死亡率
- 批准号:
8662250 - 财政年份:2011
- 资助金额:
$ 48.18万 - 项目类别:
Metabolite Profiling and Cardiovascular Mortality in End-stage Renal Disease
终末期肾病的代谢分析和心血管死亡率
- 批准号:
8468172 - 财政年份:2011
- 资助金额:
$ 48.18万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 48.18万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 48.18万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 48.18万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 48.18万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 48.18万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 48.18万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 48.18万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 48.18万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 48.18万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 48.18万 - 项目类别:
Training Grant














{{item.name}}会员




