A Computational IMage Analysis Platform (CIMAP) for HuBMAP
HuBMAP 的计算图像分析平台 (CIMAP)
基本信息
- 批准号:10532531
- 负责人:
- 金额:$ 74.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-03 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnatomyAtlasesBasic ScienceBiological ModelsBiologyCell CountCellsClinical ResearchClinical assessmentsComputersDataData SetDisciplineEngineeringEnvironmentGenesGoalsHistologyHumanImageImage AnalysisInternetKnowledgeLinkLiverLungMachine LearningMentorshipMicroscopyModelingMolecularMorphologyMultiomic DataOntologyOrganPlayProteinsPublic HealthRNARenaissanceResearch Project GrantsResolutionScientistSkinTechnologyTissue imagingTissuesTranscriptTranslational ResearchValidationbasecell typeclinical decision-makingclinical diagnosiscomputational pipelinesdrug discoveryhigh dimensionalityimaging modalityinnovationlymph nodesmachine learning pipelinemetabolomemolecular imagingnext generationnovelpreclinical studyprognosticationrecruitsubmicronsuccesssynergismtooltranscriptomicsunderrepresented minority student
项目摘要
Abstract: Advancement in high-resolution microscopy has opened unprecedented opportunities to investigate cells and tissues spatially at sub-micron level, via molecular imaging of gene transcripts, proteins or metabolomes. Parallel advances in computer-based hardware technologies and AI/ machine learning (ML) also offer a vehicle to study such multi-omics data in high dimensionality. An outstanding challenge involves a fusion of such data and thorough understanding of the fused data in all possible domains, including in basic science, clinical or pre-clinical studies using model systems, clinical diagnosis, prognostication, and drug discovery. Human Bio-Molecular Atlas Project (HuBMAP) consortium is an avenue for generating high-resolution multi-omics data at single cell resolution using a multitude of spatial molecular omics technologies. Common imaging modality that connects all these data types is brightfield histology microscopy, which is inexpensive and integrates the above-mentioned multi-omics data with clinical decision making. This HIVE Tools proposal aims to develop and implement novel machine learning pipelines to predict cell types and/or states from brightfield histology images using spatial protein- and/or RNA-based technology data with concurrent brightfield histology. This will enable using these spatial omics data as a bridge to link histology with high content single cell data sets and thus create a single exploration space from histology to biomolecules in distinct cell types. As a first step, we will employ select data collected under HuBMAP or generated via this HIVE team using CODEX as well as spatial transcriptomics (ST), and develop the proposed computational pipeline. We will demonstrate mapping of cell types and cell states to brightfield histology images on the same section from which the molecular data are generated, as well as on the independent adjacent section via registration, and finally on an independent validation tissue section. We will subsequently explore application of this approach to other HuBMAP organs including lymph node, skin, liver and lung. We will also develop 3D scalable graphics of cell types being detected using our pipeline, with a goal to develop ontological framework integrating atoms to anatomy for an objective understanding of variability in reference human atlas. We will create synergies with other HIVE teams to integrate the developed pipelines, tools with HuBMAP web-cloud portal as an easy-to-use, plug-and-play end-user plugin that is openly accessible to quantify cell counts, types, features, as well as states via uploading brightfield histology tissue images to the portal. Our innovative translational science teams’ model will recruit underrepresented minority students in STEM from biology as well as from engineering disciplines to provide them a mentorship environment and scientific opportunities within our team and that of collaborators. This strategy will develop a next generation renaissance scientist, who will be able to continue investigating along the proposed direction combining knowledge from biology, imaging, and engineering in a single research project.
摘要:高分辨率显微镜的发展为在亚微米水平上研究细胞和组织提供了前所未有的机会,通过基因转录物、蛋白质或代谢组的分子成像。基于计算机的硬件技术和人工智能/机器学习(ML)的并行进步也为研究这种高维多组学数据提供了一种工具。一个突出的挑战涉及到这些数据的融合和对所有可能领域的融合数据的透彻理解,包括基础科学、使用模型系统的临床或临床前研究、临床诊断、诊断和药物发现。人类生物分子图谱计划(HuBMAP)联盟是一种使用多种空间分子组学技术以单细胞分辨率生成高分辨率多组学数据的途径。连接所有这些数据类型的常见成像模式是明场组织学显微镜,其价格低廉,并将上述多组学数据与临床决策相结合。该HIVE Tools提案旨在开发和实施新的机器学习管道,以使用基于蛋白质和/或RNA的空间技术数据和并发明场组织学,从明场组织学图像中预测细胞类型和/或状态。 这将使使用这些空间组学数据作为桥梁,将组织学与高含量的单细胞数据集联系起来,从而创建从组织学到不同细胞类型中的生物分子的单一探索空间。 作为第一步,我们将使用在HuBMAP下收集的或通过HIVE团队使用CODEX以及空间转录组学(ST)生成的数据,并开发拟议的计算管道。 我们将在生成分子数据的同一切片上,以及通过配准在独立的相邻切片上,最后在独立的验证组织切片上,演示细胞类型和细胞状态到明场组织学图像的映射。我们随后将探索这种方法在其他HuBMAP器官(包括淋巴结、皮肤、肝脏和肺)中的应用。 我们还将开发使用我们的管道检测到的细胞类型的3D可扩展图形,目标是开发将原子与解剖结构相结合的本体框架,以便客观地了解参考人体图谱中的变异性。我们将与其他HIVE团队建立协同效应,将开发的管道,工具与HuBMAP网络云门户整合为一个易于使用的,即插即用的最终用户插件,可以通过将明场组织学组织图像上传到门户来公开访问以量化细胞计数,类型,特征以及状态。我们创新的转化科学团队的模式将招募来自生物学和工程学科的STEM中代表性不足的少数民族学生,为他们提供我们团队和合作者中的导师环境和科学机会。这一战略将培养下一代的文艺复兴科学家,他们将能够继续沿着沿着提出的方向进行研究,将生物学,成像和工程学的知识结合在一个研究项目中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Jain其他文献
Sanjay Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Jain', 18)}}的其他基金
A Computational IMage Analysis Platform (CIMAP) for HuBMAP
HuBMAP 的计算图像分析平台 (CIMAP)
- 批准号:
10841858 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Kidney single cell and spatial molecular atlas project - KIDSSMAP
肾脏单细胞和空间分子图谱项目 - KIDSSMAP
- 批准号:
10531101 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
Kidney single cell and spatial molecular atlas project - KIDSSMAP
肾脏单细胞和空间分子图谱项目 - KIDSSMAP
- 批准号:
10867926 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
National Institute of Diabetes and Digestive and Kidney Diseases ATLAS (D2K-ATLAS) Center as an accessible, comprehensive data portfolio for renal and genitourinary development and disease
国家糖尿病、消化和肾脏疾病研究所 ATLAS (D2K-ATLAS) 中心作为肾脏和泌尿生殖发育和疾病的可访问、全面的数据组合
- 批准号:
10910532 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
Kidney single cell and spatial molecular atlas project - KIDSSMAP
肾脏单细胞和空间分子图谱项目 - KIDSSMAP
- 批准号:
10531099 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
Kidney single cell and spatial molecular atlas project - KIDSSMAP
肾脏单细胞和空间分子图谱项目 - KIDSSMAP
- 批准号:
10705737 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
National Institute of Diabetes and Digestive and Kidney Diseases ATLAS (D2K-ATLAS) Center as an accessible, comprehensive data portfolio for renal and genitourinary development and disease
国家糖尿病、消化和肾脏疾病研究所 ATLAS (D2K-ATLAS) 中心作为肾脏和泌尿生殖发育和疾病的可访问、全面的数据组合
- 批准号:
10605033 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
Research Project 1: A Multidimensional Molecular Atlas of Healthy and Diseased Human Pediatric Kidney
研究项目 1:健康和患病人类儿童肾脏的多维分子图谱
- 批准号:
10530270 - 财政年份:2022
- 资助金额:
$ 74.99万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Studentship