Human Microbiome Compendium: large-scale curation and processing of human microbiome datasets
人类微生物组纲要:人类微生物组数据集的大规模管理和处理
基本信息
- 批准号:10538341
- 负责人:
- 金额:$ 36.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAutomated AnnotationBiologicalBiological MarkersClassificationCodeCollectionComplexDataData SetDatabasesDescriptorDevelopmentDimensionsDiseaseEnvironmentEtiologyGenerationsGenomicsHealthHumanHuman MicrobiomeHuman bodyIndividualInternetInterviewLinkMachine LearningMeta-AnalysisMetadataMetagenomicsMethodsModelingNoiseOntologyOutputPathway interactionsPatternPlayProcessPublishingResearch PersonnelResourcesRibosomal RNARunningSample SizeSamplingSequence Read ArchiveShotgunsSignal TransductionSiteStandardizationSupercomputingSystemTechniquesTherapeuticTimeTrainingVariantVisualizationVisualization softwareWidthWritingbasebioinformatics toolcommunity livingdata toolsdisease diagnosisfallsfecal microbiomeimprovedinsightmachine learning modelmetagenomic sequencingmicrobialmicrobial communitymicrobiomemicrobiome analysismicrobiome researchmicrobiotanovelnovel therapeutic interventionsample collectiontooltraitweb appweb services
项目摘要
ABSTRACT
Mounting evidence shows the microbial communities living in (and on) the human body play a key role in the
etiology of disease. A major obstacle in the field is the dearth of reliable methods for extracting meaningful signals
from small, noisy, intercorrelated, and highly variable microbiome datasets. Enhancing the ability of researchers
to generate robust characterizations of the complex relationship between microbiota and their hosts will support
novel, more reliable diagnosis of disease and bring the field one step closer to finding the causal links underlying
microbiome-based therapeutics. Until now, however, researchers have not had the huge volume of data required
to draw these conclusions. Although microbiome data from hundreds of thousands of samples is available in the
NCBI Sequence Read Archive (SRA), these datasets have not been leveraged at a large scale. To bridge this
gap, we will build an automated pipeline to process and aggregate more than 750,000 samples of amplicon and
shotgun metagenomics sequencing data from all publicly available human microbiome samples. We will build a
platform, which we call "The Human Microbiome Compendium," for compiling collections of relevant samples
that can be used by researchers to find ecological dynamics that have until now been hidden in the noise. The
compendium will allow users to see relative abundances of microbial taxa in every sample, which will also be
linked to NCBI metadata and annotations generated by a new tool that imputes a uniform set of descriptors for
sample type, body site, and host traits. We will also use the compendium to train machine learning models for
dimensionality reduction, which will improve the power of independent microbiome studies by incorporating
insights from the compendium's collection of hundreds of thousands of samples. These data and tools will be
distributed across multiple channels, including a web application where users will be able to upload data to be
processed in real time by the dimensionality reduction tools. The proposed studies will generate the first
comprehensive aggregation of the microbiome datasets available via the SRA, which will be used to provide
characterizations of the human microbiome in unprecedented detail. The resulting compendium will encourage
the use of publicly available data and inform new microbiome analysis tools that will help extract important
associations in studies where it's impractical to acquire the sample sizes required by conventional techniques.
Results from this study will be a starting point to identification of microbiome biomarkers for disease and the
development of novel therapeutic approaches.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ran Blekhman其他文献
Ran Blekhman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ran Blekhman', 18)}}的其他基金
Milk-Omics: Systems Biology of Human Milk and Its Links to Maternal and Infant Health
乳汁组学:母乳的系统生物学及其与母婴健康的联系
- 批准号:
10531465 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Human Microbiome Compendium: large-scale curation and processing of human microbiome datasets
人类微生物组纲要:人类微生物组数据集的大规模管理和处理
- 批准号:
10701823 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10679265 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Milk-Omics: Systems Biology of Human Milk and Its Links to Maternal and Infant Health
乳汁组学:母乳的系统生物学及其与母婴健康的联系
- 批准号:
10709555 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10227036 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
9753291 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10289962 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10449442 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10622273 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




