3D Bioprinted Collagen Vascular Conduits For Use In Patients With Congenital Heart Defects
3D 生物打印胶原血管导管用于先天性心脏病患者
基本信息
- 批准号:10537817
- 负责人:
- 金额:$ 7.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnastomosis - actionAnatomyAnimal ModelAnimalsAreaAutologousBiomechanicsBiomedical EngineeringBioreactorsBlood VesselsCardiacCellsCellular InfiltrationCharacteristicsChildClinicalCollagenCommon VentricleComplexComputer ModelsCongenital AbnormalityCongenital Heart DefectsDevelopmentElectrospinningEndotheliumEngineeringExtracellular MatrixFoundationsFutureGeometryGoalsGoretexGrowthHistologicHistologyHumanHydrogelsImmunohistochemistryImplantInferior vena cava structureInflammationLeadLiquid substanceMRI ScansMeasuresMechanicsMethodsModificationMonitorNewborn InfantObstructionOperative Surgical ProceduresOptical Coherence TomographyPatientsPerformancePolyglycolic AcidPorosityPrintingProductionPropertyPsychological reinforcementPulmonary artery structureRattusResistanceResolutionScientistSpecificitySprague-Dawley RatsStenosisSurgeonTestingThickThrombosisTissue EngineeringTissue ViabilityTissuesTrainingTubular formationVascular GraftVenous Pressure levelWorkbasebiodegradable scaffoldbiomaterial compatibilitybiomechanical testbioprintingcostdesignhemodynamicsimmunogenicityimplantationimprovedin vivomechanical propertiesmicroCTmouse modelpressurescaffoldshear stresssimulationtissue support frameultrasoundvascular tissue engineering
项目摘要
PROJECT SUMMARY/ABSTRACT
Congenital heart defects (CHDs) are the most common birth defect in the US, with half of all newborns with CHD
requiring surgical intervention. Surgical treatment of many CHDs involves implantation of synthetic conduits such
as Gore-Tex™ due to their low cost, ease of surgical handling, and lack of alternatives. An example of this
application is the extra-cardiac Fontan conduit for single ventricle anomalies, that connects the inferior vena cava
to the pulmonary artery. Use of synthetic grafts as conduits in children, however, is complicated by progressive
obstruction and lack of growth potential. Tissue engineered vascular grafts (TEVGs) are a potential solution,
where a biodegradable scaffold with autologous cells mature into a functional blood vessel as the scaffold
degrades. Recent work suggests that TEVG scaffold porosity is essential for cellular infiltration. Current TEVG
production methods, however, are only able to produce simple tubular constructs that do not match the wide
array of anatomies in children with CHDs. Patient specific Fontan conduits designed using Computational Fluid
Dynamics (CFD) have been shown, in simulations, to improve their hemodynamic profile resulting in better flow
distribution, improved energy efficiency and reduced wall shear stress. Thus, there remains critical need for
patient specific conduits that are biocompatible and grow with the patient. The Feinberg lab has developed a 3D
bioprinting platform called freeform reversible embedding of suspended hydrogels (FRESH) that enables printing
of high-strength and microporous collagen-based ECM into functional, patient specific tissue scaffolds with
unprecedented resolution (20 µm) and structural complexity. I hypothesize that the microporosity of FRESH
printed, collagen-based, vascular conduits will drive in-vivo cellular infiltration and facilitate robust cellular
remodeling towards neo-tissue formation, and that FRESH can produce conduits that meet the geometric
demands required of children with CHD. In Aim 1 I will FRESH bioprint simple straight conduits, implant them
into rats IVC and monitor their function as a conduit longitudinally via repeated in-vivo ultrasound. At pre-
determined timepoints I will explant these TEVGs and assess the biomechanical and histological changes
brought upon by in vivo cellular remodeling. In Aim 2 I will use computational modelling to determine wall shear
stress on patient specific Fontan conduits, segmented from patients MRI scans, and reinforce areas of high wall
shear stress by increasing regional or circumferential wall thickness. I will then FRESH 3D bioprint these patient
specific Fontan conduits, gauge for accuracy and perform biomechanical tests on them. Completion of these
aims is an important step towards our ability in creating patient specific, tissue engineered Fontan conduits that
are suited to the array of anatomical geometries seen in patients with CHD, are modified with computational fluid
dynamics to improve their long-term hemodynamic performance, are biocompatible and can grow with the
patient. This work will allow us to move on to the next steps of large animal implantations of our TEVGs.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Syed Faaz Ashraf其他文献
Syed Faaz Ashraf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Syed Faaz Ashraf', 18)}}的其他基金
3D Bioprinted Collagen Vascular Conduits For Use In Patients With Congenital Heart Defects
3D 生物打印胶原血管导管用于先天性心脏病患者
- 批准号:
10763791 - 财政年份:2022
- 资助金额:
$ 7.62万 - 项目类别: