Photoactivatable cell sorting to link genetic variation with complex cellular phenotypes
可光激活的细胞分选将遗传变异与复杂的细胞表型联系起来
基本信息
- 批准号:10539111
- 负责人:
- 金额:$ 41.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAnaphaseAnimal ModelAreaAwarenessBedsBiologicalBiological AssayBiologyCRISPR/Cas technologyCell CycleCell SeparationCell ShapeCell SizeCell divisionCellsCellular MorphologyCellular StructuresCellular biologyComplexComputing MethodologiesDiseaseDisease ProgressionDyesEnvironmentEukaryotic CellFluorescence-Activated Cell SortingGeneticGenetic CrossesGenetic ResearchGenetic VariationGenotypeGoalsGrowthHeritabilityHumanHuman GeneticsImage AnalysisIndividualLabelLaboratory OrganismLengthLightingLinkMalignant NeoplasmsMapsMeasurementMeasuresMethodsMicroscopeMicroscopyMinorMitoticModelingMorphologyNuclearOak TreeOrganismPhenotypePopulationProcessProteinsRecombinantsResearch Project GrantsResistanceResolutionSaccharomyces cerevisiaeSaccharomycetalesSample SizeSamplingShapesSourceTestingTimeVariantWineYeastsautomated image analysiscell behaviorcell dimensioncell typecellular imagingexperimental studyflexibilityfluorophoregenetic analysisgenetic architecturegenetic variantgenome sequencinggenome wide association studyinsightinterestlaboratory experiencelaboratory experimentmeetingsmethod developmentmutation screeningneutrophilnovelphotoactivationprecise genome editingrapid techniquereal-time imagestrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Individuals differ from each other in many traits, and very few trait differences have simple genetic causes.
Indeed, traits associated with common diseases in humans tend to be quite complex, with variation caused by
the combined effects of many genetic variants as well as environmental influences and random chance.
Determining the genetic contributions to variation in complex traits therefore remains challenging. One
approach to meeting this challenge is to perform genetic analysis in laboratory organisms. Laboratory
experiments can control for sources of variation that human studies cannot, and can serve as a test bed for
developing new methods to determine genotypes and phenotypes at large scale. The budding yeast,
Saccharomyces cerevisiae, long used as a model for eukaryotic cell biology, has emerged as a key organism for
such experiments. Current yeast experiments achieve high statistical power for detecting genetic effects on
trait variation by sampling thousands to millions of individuals. However, to achieve these sample sizes the
experiments focus on traits that are easy to measure or select for, such as resistance to toxic environments. This
limited repertoire leaves a big gap in understanding the genetic basis of differences in complex cellular traits
such as morphological ones. The shapes and sizes of cells are highly relevant to various disease processes but
are understudied by quantitative geneticists. To fill this gap, this project will use a combination of high-
throughput microscopy, automated image analysis, and photoactivatable cell sorting to sample individuals for
high-power genetic analysis. Genetic crosses between natural-isolate strains of budding yeast will generate
large numbers of recombinant progeny. Real-time image analysis and microscope control will be used to
identify cells with extreme trait values and label them via photoactivation of a genetically encoded or
experimentally applied convertible fluorophore. Selected cells will then be recovered using fluorescence
activated cell sorting and pooled for genome sequencing. Genetic variants that contribute to differences in cell
morphology will be identified as those that are over-represented in selected pools relative to unselected pools.
The project will produce a broadly applicable method for linking complex cellular traits with genetic
differences. It will also yield new insights into the genetic basis of variation in such traits, and thereby advance
understanding of the genetic underpinnings of complex diseases.
项目总结/摘要
个体在许多性状上彼此不同,很少有性状差异是由简单的遗传原因引起的。
事实上,与人类常见疾病相关的特征往往相当复杂,
许多遗传变异以及环境影响和随机机会的综合影响。
因此,确定复杂性状变异的遗传贡献仍然具有挑战性。一
应对这一挑战的方法是在实验室生物体中进行遗传分析。实验室
实验可以控制人类研究无法控制的变异来源,并可以作为测试平台,
开发新的方法来大规模确定基因型和表型。芽殖酵母,
酿酒酵母,长期以来被用作真核细胞生物学的模型,已经成为一种关键的生物体,
这样的实验。目前的酵母实验在检测遗传效应方面具有很高的统计功效,
通过对数千到数百万个体进行取样来分析性状变异。然而,为了达到这些样本量,
实验集中在易于测量或选择的特性上,例如对有毒环境的抵抗力。这
在理解复杂细胞特征差异的遗传基础方面,有限的剧目留下了很大的空白
例如形态学的。细胞的形状和大小与各种疾病过程高度相关,
被数量遗传学家忽视了。为了填补这一空白,该项目将使用高-
通过显微镜、自动图像分析和光活化细胞分选对个体进行取样,
高倍基因分析天然分离的芽殖酵母菌株之间的遗传杂交将产生
大量的重组后代。实时图像分析和显微镜控制将用于
识别具有极端性状值的细胞,并通过光活化遗传编码的或
实验应用的可转换荧光团。然后使用荧光技术回收选定的细胞
激活细胞分选并汇集用于基因组测序。导致细胞差异的遗传变异
形态学将被确定为在所选择的池中相对于非细胞池过度代表的那些。
该项目将产生一种广泛适用的方法,将复杂的细胞特征与遗传特征联系起来。
差异它还将对这些性状变异的遗传基础产生新的见解,从而促进
了解复杂疾病的遗传基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark L Siegal其他文献
Hsp90 depletion goes wild
- DOI:
10.1186/1741-7007-10-14 - 发表时间:
2012-02-27 - 期刊:
- 影响因子:4.500
- 作者:
Mark L Siegal;Joanna Masel - 通讯作者:
Joanna Masel
Mark L Siegal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark L Siegal', 18)}}的其他基金
Genetic and Nongenetic Variation in Complex Traits
复杂性状的遗传和非遗传变异
- 批准号:
10552384 - 财政年份:2023
- 资助金额:
$ 41.86万 - 项目类别:
Genetic and Nongenetic Variation in Complex Traits
复杂性状的遗传和非遗传变异
- 批准号:
9923669 - 财政年份:2016
- 资助金额:
$ 41.86万 - 项目类别:
Genetic and Nongenetic Variation in Complex Traits
复杂性状的遗传和非遗传变异
- 批准号:
9071727 - 财政年份:2016
- 资助金额:
$ 41.86万 - 项目类别:
Genetic and Nongenetic Variation in Complex Traits
复杂性状的遗传和非遗传变异
- 批准号:
10393771 - 财政年份:2016
- 资助金额:
$ 41.86万 - 项目类别:
Sources and consequences of phenotypic variation in complex regulatory networks
复杂调控网络中表型变异的来源和后果
- 批准号:
7887887 - 财政年份:2010
- 资助金额:
$ 41.86万 - 项目类别:
Sources and consequences of phenotypic variation in complex regulatory networks
复杂调控网络中表型变异的来源和后果
- 批准号:
8245747 - 财政年份:2010
- 资助金额:
$ 41.86万 - 项目类别:
Sources and consequences of phenotypic variation in complex regulatory networks
复杂调控网络中表型变异的来源和后果
- 批准号:
8437178 - 财政年份:2010
- 资助金额:
$ 41.86万 - 项目类别:
Sources and consequences of phenotypic variation in complex regulatory networks
复杂调控网络中表型变异的来源和后果
- 批准号:
8055405 - 财政年份:2010
- 资助金额:
$ 41.86万 - 项目类别:
相似国自然基金
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
- 批准号:
574890-2022 - 财政年份:2022
- 资助金额:
$ 41.86万 - 项目类别:
University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
- 批准号:
575128-2022 - 财政年份:2022
- 资助金额:
$ 41.86万 - 项目类别:
University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10797668 - 财政年份:2022
- 资助金额:
$ 41.86万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2022
- 资助金额:
$ 41.86万 - 项目类别:
Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10345098 - 财政年份:2022
- 资助金额:
$ 41.86万 - 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10561625 - 财政年份:2022
- 资助金额:
$ 41.86万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2021
- 资助金额:
$ 41.86万 - 项目类别:
Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
- 批准号:
466918 - 财政年份:2021
- 资助金额:
$ 41.86万 - 项目类别:
Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
- 批准号:
555539-2020 - 财政年份:2020
- 资助金额:
$ 41.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
- 批准号:
BB/T009608/1 - 财政年份:2020
- 资助金额:
$ 41.86万 - 项目类别:
Fellowship