Expanding articulatory information from ultrasound imaging of speech using MRI-based image simulations and audio measurements

使用基于 MRI 的图像模拟和音频测量来扩展语音超声成像的发音信息

基本信息

  • 批准号:
    10537976
  • 负责人:
  • 金额:
    $ 3.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Ultrasound imaging provides articulatory feedback useful for remediating speech sound disorders, which affect 5% of children and cause long-term deficits in social health and employment in adulthood. However, ultrasound imaging can be difficult to interpret for clinicians and individuals, limiting the understanding of articulatory data and ultrasound biofeedback therapy speech outcomes. A likely source of difficulty is the articulatory information missing from ultrasound images, such as the tongue tip and reference vocal tract structures (e.g., palate) that cannot be consistently imaged with ultrasound due to air. Much of this missing information from ultrasound can be ascertained in magnetic resonance imaging (MRI) because MRI images the entire vocal tract. Comparing ultrasound images and MRI will improve interpretation of ultrasound images by confirming that certain characteristics of ultrasound images (e.g., obscured tongue tip, double edge artifacts) occur from characteristics of tongue shapes; as well, models can be trained to predict from ultrasound images the articulatory information shown in MRI. However, articulatory variability prevents direct comparison between these images. A novel approach to avoid variability is to simulate ultrasound wave propagation in tissue segmented from MRI. Recent advancements in deep learning have also demonstrated ability to address the inverse problem of predicting articulation from acoustic data. Thus, to meet the needs of improving ultrasound image interpretation, the goal for this proposal is to use simulated ultrasound images and neural network models to characterize and predict articulatory information missing from 2D midsagittal ultrasound images. These models will be trained on MRI and audio data. We will characterize missing articulatory information by developing efficient simulation of ultrasound images from MRI tissue segmentation. One hypothesis that will be tested is the guideline for using the lower edge of double edge artifacts in ultrasound images as the tongue surface. To test this guideline for a greater range of data (including disordered child speakers and different simulated probe rotations), double edge artifacts will be compared with tissue maps used to generate the simulated images. Another comparison will estimate the amount of tongue tip typically missing in /r/ tongue shapes. We will then develop a deep learning model that trains on information from MRI to predict midsagittal vocal tract shapes (including the tongue tip and palate) from the inputs of tongue contours from ultrasound and audio. With these aims, we will add insight to ultrasound imaging for speech and provide a tool with future applications in expanding articulatory information, e.g., testing outcomes of using more complete vocal tract information in ultrasound biofeedback therapy. Training for this fellowship will occur at the University of Cincinnati, with opportunities to visit labs at two additional institutions. The proposed plan provides training from a range of investigators in topics such as ultrasound imaging and application to speech research, developing skills needed for my future goals.
项目摘要 超声成像提供了发音反馈,可用于修复语音疾病, 影响5%的儿童,并在成年后造成社会健康和就业的长期赤字。 但是,对于临床医生和个人,超声成像可能很难解释,从而限制了 了解发音数据和超声生物反馈疗法的演讲结果。可能的来源 难度是超声图像中缺少的关节信息,例如舌头和参考 声带结构(例如,口感)无法通过空气而超声始终成像。 在磁共振成像中可以确定来自超声的许多缺失信息 (MRI)因为MRI图像整个声道。比较超声图像和MRI将改善 通过确认超声图像的某些特征(例如, 舌头遮盖的尖端,双边伪影)来自舌形的特征;同样,模型可以 接受培训以从超声图像中预测MRI中显示的发音信息。但是,发音 可变性阻止了这些图像之间的直接比较。避免可变性的一种新颖方法是 模拟从MRI分割的组织中的超声波传播。深度学习的最新进展 还表明了解决声学数据表达的反向问题的能力。 因此,为了满足改善超声图像解释的需求,该建议的目标是使用 模拟超声图像和神经网络模型,以表征和预测关节信息 2d中幕超声图像缺失。这些模型将接受MRI和音频数据的培训。 我们将通过开发有效的超声模拟来表征缺失的关节信息 来自MRI组织分割的图像。将测试的一个假设是使用较低的指南 超声图像中双边伪影的边缘作为舌表面。测试该指南的更大 数据范围(包括无序的儿童扬声器和不同的模拟探针旋转),双边缘 将伪影与用于生成模拟图像的组织图进行比较。另一个比较会 估计舌头尖端通常缺少 / r /舌头形状。然后,我们将发展深入学习 训练来自MRI的信息以预测中标的声音形状的模型(包括舌头和 口感)来自超声和音频的舌轮廓输入。以这些目标,我们将为 超声成像进行语音成像,并为扩大发音信息的未来应用提供工具, 例如,在超声生物反馈疗法中使用更完整的声带信息的测试结果。 该奖学金的培训将在辛辛那提大学举行,并有机会参观两个 其他机构。拟议的计划提供了一系列调查人员的培训,例如 超声成像和对语音研究的应用,发展我未来目标所需的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Rotong Li其他文献

Sarah Rotong Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

航天低温推进剂加注系统气液状态声学监测技术研究
  • 批准号:
    62373276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
  • 批准号:
    52350039
  • 批准年份:
    2023
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
海洋声学功能材料发展战略研究
  • 批准号:
    52342304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    专项项目

相似海外基金

Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
  • 批准号:
    10715163
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
  • 批准号:
    10666001
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
  • 批准号:
    10761587
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
  • 批准号:
    10589666
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了