Global Lipidomics Analysis Techniques for Novel Biomarker Discovery of Environmental Enteropathy
用于环境肠病新生物标志物发现的全球脂质组学分析技术
基本信息
- 批准号:10537670
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAspirate substanceBiological AssayBiological MarkersCessation of lifeChargeChildChild HealthChild MalnutritionChildhoodChronicClinical ResearchCohort StudiesComputing MethodologiesCountryDataData AggregationData AnalysesData SetDatabasesDevelopmentDuodenumEnvironmental ImpactFoundationsFutureGastrointestinal EndoscopyIndividualInflammationInterventionIsomerismKnowledgeLeadLipidsMalabsorption SyndromesMalnutritionMass Spectrum AnalysisMethodologyMethodsModelingMorbidity - disease rateMorphologic artifactsMotivationNutrientPathway AnalysisPathway interactionsPatientsPattern RecognitionPhenotypePlasmaPopulation StudyReportingReproducibilityReproducibility of ResultsResearchRunningSample SizeSamplingSerumSmall IntestinesStructureTechniquesTestingTimeUrineVariantWorkanalysis pipelineanalytical toolbasebiomarker discoverybiomarker validationcandidate identificationcandidate markercohortcomorbiditycomputational pipelinesdata complexitydesigndiagnostic biomarkerdisease phenotypedisorder controlgastrointestinalimprovedinsightlarge scale datalipidomelipidomicsliquid chromatography mass spectrometrymortalitynoninvasive diagnosisnonlinear regressionnovelnovel markerpersonalized medicinetooltreatment planningvalidation studies
项目摘要
Project Summary/Abstract
As a condition of the small intestine, environmental enteropathy causes to chronic inflammation and
malabsorption of nutrients leading it to present itself phenotypically similar to malnutrition. Separation and
identification of patients with environmental enteropathy from malnutrition can only be done via an invasive upper
gastrointestinal endoscopy. In an effort to better characterize and understand environmental enteropathy, global
lipidomics profiling was performed on plasma, urine, and duodenal aspirate samples of a large cohort clinical
study of 415 Pakistani children. Larger sample sizes introduces technical challenges, such as the need to run
samples in batches, which in turn presents computational challenges of analysis. This proposal is focused on
the development of data-dependent methodologies for untargeted lipidomics analysis to identify robust lipid
profiles unique to each environmental enteropathy and malnutrition.
The first aim of this proposed research is to design a multi-batch analysis pipeline to efficiently and accurately
aggregate data across the various batches. This pipeline will address 3 computational challenges of multi-
batched data: 1) chromatographic retention time alignment, 2) missing data imputation, and 3) batch effect
correction. Each of these challenges have been analyzed individually, but in data analysis each step is
dependent on and influenced by the prior one. Development of an integrated, data-dependent pipeline specific
to mass spectrometry data will allow for reproducible results. The pipeline will be evaluated for accuracy via
testing on various sample matrices and by comparison to existing algorithms.
The proposed second aim is the development of a pathway-based data-dependent tool for putative lipid
identification. A bottleneck of untargeted analysis is the rapid identification of compounds. Due to the volume of
data, the current approach of only identifying those features which are statistically significant creates gaps in
downstream work such as pathway analysis. Introducing pathway knowledge earlier in the workflow will yield in
more meaningful results. This approach uses an initial input of lipids unique to the study and builds a networks
of additional connected lipids. These new lipids are stored in a database and a search is performed for them in
the user’s data. Identification of lipids with this methods will lead to a more complete network profile of results.
This project will identify distinctive lipidome profiles of environmental enteropathy patients and separate them
from a larger malnutrition disease control cohort. This initial step will lay the foundation for future validation
studies and ultimately the utilization of non-invasive diagnostics markers of environmental enteropathy, leading
to improved health of these children. As large-scale studies steadily become more common and to answer the
resulting computational challenges, this project will produce data-dependent methodologies for untargeted multi-
batch mass spectrometry lipidomics analysis which can then be personalized for future lipidomics studies.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khyati Mehta其他文献
Khyati Mehta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khyati Mehta', 18)}}的其他基金
Global Lipidomics Analysis Techniques for Novel Biomarker Discovery of Environmental Enteropathy
用于环境肠病新生物标志物发现的全球脂质组学分析技术
- 批准号:
10663197 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant














{{item.name}}会员




