Global Lipidomics Analysis Techniques for Novel Biomarker Discovery of Environmental Enteropathy
用于环境肠病新生物标志物发现的全球脂质组学分析技术
基本信息
- 批准号:10537670
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAspirate substanceBiological AssayBiological MarkersCessation of lifeChargeChildChild HealthChild MalnutritionChildhoodChronicClinical ResearchCohort StudiesComputing MethodologiesCountryDataData AggregationData AnalysesData SetDatabasesDevelopmentDuodenumEnvironmental ImpactFoundationsFutureGastrointestinal EndoscopyIndividualInflammationInterventionIsomerismKnowledgeLeadLipidsMalabsorption SyndromesMalnutritionMass Spectrum AnalysisMethodologyMethodsModelingMorbidity - disease rateMorphologic artifactsMotivationNutrientPathway AnalysisPathway interactionsPatientsPattern RecognitionPhenotypePlasmaPopulation StudyReportingReproducibilityReproducibility of ResultsResearchRunningSample SizeSamplingSerumSmall IntestinesStructureTechniquesTestingTimeUrineVariantWorkanalysis pipelineanalytical toolbasebiomarker discoverybiomarker validationcandidate identificationcandidate markercohortcomorbiditycomputational pipelinesdata complexitydesigndiagnostic biomarkerdisease phenotypedisorder controlgastrointestinalimprovedinsightlarge scale datalipidomelipidomicsliquid chromatography mass spectrometrymortalitynoninvasive diagnosisnonlinear regressionnovelnovel markerpersonalized medicinetooltreatment planningvalidation studies
项目摘要
Project Summary/Abstract
As a condition of the small intestine, environmental enteropathy causes to chronic inflammation and
malabsorption of nutrients leading it to present itself phenotypically similar to malnutrition. Separation and
identification of patients with environmental enteropathy from malnutrition can only be done via an invasive upper
gastrointestinal endoscopy. In an effort to better characterize and understand environmental enteropathy, global
lipidomics profiling was performed on plasma, urine, and duodenal aspirate samples of a large cohort clinical
study of 415 Pakistani children. Larger sample sizes introduces technical challenges, such as the need to run
samples in batches, which in turn presents computational challenges of analysis. This proposal is focused on
the development of data-dependent methodologies for untargeted lipidomics analysis to identify robust lipid
profiles unique to each environmental enteropathy and malnutrition.
The first aim of this proposed research is to design a multi-batch analysis pipeline to efficiently and accurately
aggregate data across the various batches. This pipeline will address 3 computational challenges of multi-
batched data: 1) chromatographic retention time alignment, 2) missing data imputation, and 3) batch effect
correction. Each of these challenges have been analyzed individually, but in data analysis each step is
dependent on and influenced by the prior one. Development of an integrated, data-dependent pipeline specific
to mass spectrometry data will allow for reproducible results. The pipeline will be evaluated for accuracy via
testing on various sample matrices and by comparison to existing algorithms.
The proposed second aim is the development of a pathway-based data-dependent tool for putative lipid
identification. A bottleneck of untargeted analysis is the rapid identification of compounds. Due to the volume of
data, the current approach of only identifying those features which are statistically significant creates gaps in
downstream work such as pathway analysis. Introducing pathway knowledge earlier in the workflow will yield in
more meaningful results. This approach uses an initial input of lipids unique to the study and builds a networks
of additional connected lipids. These new lipids are stored in a database and a search is performed for them in
the user’s data. Identification of lipids with this methods will lead to a more complete network profile of results.
This project will identify distinctive lipidome profiles of environmental enteropathy patients and separate them
from a larger malnutrition disease control cohort. This initial step will lay the foundation for future validation
studies and ultimately the utilization of non-invasive diagnostics markers of environmental enteropathy, leading
to improved health of these children. As large-scale studies steadily become more common and to answer the
resulting computational challenges, this project will produce data-dependent methodologies for untargeted multi-
batch mass spectrometry lipidomics analysis which can then be personalized for future lipidomics studies.
项目概要/摘要
作为一种小肠疾病,环境性肠病会导致慢性炎症和
营养吸收不良导致其表现出与营养不良相似的表型。分离和
环境性肠病患者与营养不良的鉴别只能通过侵入性上消化道检查来完成
胃肠内窥镜检查。为了更好地描述和理解环境性肠病,全球
对大型临床队列的血浆、尿液和十二指肠抽吸样本进行脂质组学分析
对 415 名巴基斯坦儿童的研究。较大的样本量会带来技术挑战,例如需要运行
批量采样,这反过来又给分析带来了计算挑战。该提案的重点是
开发用于非靶向脂质组学分析的数据依赖方法,以识别稳健的脂质
每种环境性肠病和营养不良都有其独特的特征。
这项研究的首要目标是设计一个多批次分析流程,以高效、准确地
汇总不同批次的数据。该管道将解决多方面的 3 个计算挑战
批量数据:1) 色谱保留时间对齐,2) 缺失数据插补,以及 3) 批量效应
更正。这些挑战中的每一个都已单独分析,但在数据分析中,每个步骤都是
依赖于前一个并受其影响。开发集成的、依赖于数据的特定管道
质谱数据将允许获得可重复的结果。将通过以下方式评估管道的准确性
对各种样本矩阵进行测试并与现有算法进行比较。
拟议的第二个目标是开发一种基于途径的数据依赖工具,用于假定的脂质
鉴别。非目标分析的瓶颈是化合物的快速识别。由于体积
数据,当前仅识别那些具有统计显着性的特征的方法在
下游工作,例如路径分析。在工作流程的早期引入途径知识将产生
更有意义的结果。该方法使用研究特有的脂质初始输入并构建网络
额外连接的脂质。这些新的脂质存储在数据库中,并在以下位置进行搜索:
用户的数据。用这种方法鉴定脂质将产生更完整的结果网络概况。
该项目将鉴定环境性肠病患者独特的脂质组谱并将其分离
来自更大的营养不良疾病控制队列。这第一步将为未来的验证奠定基础
研究并最终利用环境性肠病的非侵入性诊断标记物,领先
以改善这些儿童的健康。随着大规模研究逐渐变得更加普遍并回答这个问题
由此产生的计算挑战,该项目将为非目标多目标产生依赖于数据的方法
批量质谱脂质组学分析,然后可以针对未来的脂质组学研究进行个性化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khyati Mehta其他文献
Khyati Mehta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khyati Mehta', 18)}}的其他基金
Global Lipidomics Analysis Techniques for Novel Biomarker Discovery of Environmental Enteropathy
用于环境肠病新生物标志物发现的全球脂质组学分析技术
- 批准号:
10663197 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant














{{item.name}}会员




