A novel functional interaction between a chromatin remodeler and cohesin in neuronal activity-induced enhancer architecture
神经元活动诱导的增强子结构中染色质重塑剂和粘连蛋白之间的新型功能相互作用
基本信息
- 批准号:10537687
- 负责人:
- 金额:$ 45.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAffectArchitectureBindingBrainBrain DiseasesChromatinChromatin Remodeling FactorChromosome StructuresComplexDNA BindingDNA Sequence AlterationDiseaseEnhancersEnvironmentEventFoundationsFutureG1 PhaseGene ActivationGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomeGerm LinesHela CellsHistonesHomeostasisHumanImpairmentKnockout MiceLinkMediatingMental disordersMethodsMolecular GeneticsMutant Strains MiceMutationNeuronsPRC1 ProteinPathologyPathway interactionsPhosphorylationPlayProteinsReportingRoleSMARCA4 geneSolidStimulusStructureSymptomsTechniqueschromatin remodelingcohesinconditional knockoutdevelopmental diseaseepigenetic regulationgenome-wideimproved mobilitylong term memoryneurodevelopmentnovelpromoterrelating to nervous systemrelease factorresponsetool
项目摘要
Summary:
Genome architecture, especially cohesin-mediated enhancer-promoter (E-P) looping, is a critical step for
enhancer activation and gene transcription. It remains largely unknown how chromatin regulators, which often
function locally at enhancers and promoters, affect long range E-P looping. BAF chromatin remodeling
complexes regulate transcription using energy derived from ATP hydrolysis to modulate chromatin accessibilities
and the local chromatin environment. Cohesin complexes form a ring-like structure to mediate chromosome
organization, including E-P looping, during the G0/G1 phase. Genetic mutations in both BAF and cohesin
subunits are associated with neural developmental disorders, which
share similarities in symptoms.
Activity-
regulated gene (ARG) expression plays an essential role in short-term neural responses as well as in long-term
memory formation, homeostasis, and adaptation. In response to neuronal activation, cohesin-mediated E-P
interactions either form de novo or become strengthened, a critical step in enhancer activation and ARG
expression. However, it remains unclear how neuronal activities promote cohesin function in enhancer activation.
Recently, we reported that BRG1, a core ATPase subunit in BAF complexes, plays a central role in regulating
enhancer activities, and we identified a phosphorylation event that fine-tunes BRG1 function in response to
neuronal stimulation. We showed that BRG1 deletion as well as BRG1 phospho-mutations led to impaired
enhancer activation and E-P looping in response to neuronal activities. It remains unclear how locally functioning
chromatin remodelers regulate cohesin binding and long-range E-P looping. A recently revealed important
mechanism regulating cohesin binding to enhancers is the binding mobility of cohesin to chromatin. The cohesin
release factor WAPL maintains a pool of dynamic cohesin, which is required for cohesin binding to enhancers
and the expression of lineage-specific genes. We performed preliminary studies in HeLa cells and in primary
neurons and observed that BRG1 had a similar function in regulating cohesin dynamics and in regulating the
global distribution of cohesin on chromatin. BRG1 deletion led to a global increase in cohesin binding to
chromatin but a paradoxical decrease in its binding to specific enhancers and promoters. BRG1 enhanced WAPL
function in cohesin release, and BRG1 deletion impaired cohesin dynamics. Since the BAF complex can use the
energy derived from ATP hydrolysis to improve the mobility of not only DNA bound histones, but also other
proteins including itself and the PRC1 complex, it could also mobilize chromatin-bound cohesin. We hypothesize
that BRG1 and its phosphorylation could promote neuronal activity-induced cohesin dynamics, cohesin global
redistribution on chromatin, and cohesin-mediated E-P looping. Using BRG1 and cohesin mutant mice and novel
genome-wide techniques, we will study how BRG1 regulates cohesin chromatin distribution and how cohesin
regulates BRG1-dependent neuronal ARG activation. We will determine the important functions of chromatin
remodeling factors and genome architecture regulators in neuronal gene activation and brain disorders.
摘要:
基因组结构,特别是粘附素介导的增强子-启动子(E-P)环是
增强子激活和基因转录。在很大程度上仍不清楚染色质调节器是如何
在增强剂和促进剂中发挥局部作用,影响远程E-P循环。BaF染色质重塑
复合体通过ATP水解产生的能量调节染色质的可及性来调节转录
以及当地的染色质环境。粘附素复合体形成环状结构以调节染色体
组织,包括E-P循环,在G0/G1阶段。BAF和粘附素的基因突变
亚单位与神经发育障碍有关,这是
症状有相似之处。
练习-
调节基因(Arg)的表达在短期神经反应和长期神经反应中都起着重要作用。
记忆形成、动态平衡和适应。粘附素介导的E-P对神经元激活的反应
相互作用要么从头开始,要么加强,这是增强子激活和ARG的关键步骤
表情。然而,目前尚不清楚神经元活动如何促进增强子激活中的粘附素功能。
最近,我们报道了BAF复合体中一个核心的ATPase亚基BRG1在调控中起着中心作用
增强子活性,我们确定了一种磷酸化事件,该事件微调BRG1的功能
神经刺激。我们发现BRG1缺失和BRG1磷酸化突变都会导致基因受损
神经元活动反应中的增强子激活和E-P循环。目前尚不清楚当地如何发挥作用
染色质重构体调节粘附素结合和长距离E-P环。最近披露的一项重要的
调节粘附素与增强剂结合的机制是粘附素与染色质结合的流动性。凝聚力
释放因子WAPL维持着一个动态粘附素池,这是粘附素与增强剂结合所必需的
以及特定血统基因的表达。我们在HeLa细胞和原代细胞中进行了初步研究
并观察到BRG1在调节粘附素动力学和调节
染色质上粘附素的全球分布。BRG1缺失导致粘附素结合的全球增加
染色质与特定的增强子和启动子的结合出现矛盾的减少。BRG1增强型WAPL
在粘附素释放中的作用,BRG1缺失会损害粘附素的动力学。由于BAF综合体可以使用
来自ATP水解的能量,不仅提高了DNA结合的组蛋白的流动性,而且还提高了其他
蛋白质,包括自身和Prc1复合体,它还可以动员染色质结合的粘附素。我们假设
BRG1及其磷酸化可促进神经元活性诱导的粘附素动力学,粘附素全局
染色质上的重分布,以及粘附素介导的E-P环。利用BRG1和粘附素突变小鼠及新
全基因组技术,我们将研究BRG1如何调节粘附素染色质分布以及如何粘附素
调节依赖BRG1的神经元ARG的激活。我们将确定染色质的重要功能
神经基因激活和脑功能障碍中的重塑因子和基因组结构调节因子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Wu其他文献
CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer
CD44 工程介孔二氧化硅纳米粒子用于克服乳腺癌的多药耐药性
- DOI:
10.1016/j.apsusc.2015.01.204 - 发表时间:
2015-03 - 期刊:
- 影响因子:0
- 作者:
Xin Wang;Ying Liu;Shouju Wang;Donghong Shi;Xianguang Zhou;Chunyan Wang;Jiang Wu;Zhiyong Zeng;Yanjun Li;Jing Sun;Ji;ong Wang;Longjiang Zhang;Zhaogang Teng;Guangming Lu - 通讯作者:
Guangming Lu
A chimeric vacuolar Na+/H+ antiporter gene evolved by DNA family shuf?ing confers increased salt tolerance in yeast
由 DNA 家族改组进化而来的嵌合液泡 Na /H 逆向转运蛋白基因可增强酵母的耐盐性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yong Li;Hailing Gao;Jiang Wu;Wenzhu Guan - 通讯作者:
Wenzhu Guan
Jiang Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Wu', 18)}}的其他基金
Role of Brg1 in Activity-Induced Neuronal Gene Expression and Synaptic Plasticity
Brg1 在活动诱导的神经元基因表达和突触可塑性中的作用
- 批准号:
9276806 - 财政年份:2016
- 资助金额:
$ 45.1万 - 项目类别:
Role of autism-associated chromatin remodeler Brg1 in neuronal development
自闭症相关染色质重塑蛋白 Brg1 在神经元发育中的作用
- 批准号:
8623709 - 财政年份:2013
- 资助金额:
$ 45.1万 - 项目类别:














{{item.name}}会员




