The role of a-synuclein accumulation in lysosomal hydrolase trafficking and function
α-突触核蛋白积累在溶酶体水解酶运输和功能中的作用
基本信息
- 批准号:10539942
- 负责人:
- 金额:$ 61.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:BiogenesisBiologicalBiologyBrainCell DeathCell physiologyCellsClinicDataDementia with Lewy BodiesDiseaseDocumentationEndoplasmic ReticulumEnhancersFailureFoundationsFunctional disorderFundingGenetic studyGlucoseGlycolipidsGlycosphingolipidsGolgi ApparatusHexosaminesHumanHydrolaseIn VitroInclusion BodiesInduced pluripotent stem cell derived neuronsKnowledgeLeadLewy BodiesLinkLysosomesMembrane FusionMethodsModelingMutationNerve DegenerationNervous system structureNeuronsParkinson DiseaseParkinson&aposs DementiaPathogenesisPathogenicityPathologyPathway interactionsPatientsPhenotypePlayProcessProteinsQuality ControlRoleSNAP receptorSolubilityStructureSystemTestingToxic effectTransducersWorkage relatedalpha synucleinbaseclinical developmentefficacy testinggenetic risk factorgenetic variantglucosylceramidaseglycosylationimprovedin vivoinduced pluripotent stem celllink proteinloss of functionloss of function mutationmisfolded proteinmouse modelneurotoxicitynew therapeutic targetnovelnovel therapeutic interventionpreventprotein aggregationprotein foldingprotein transportproteostasisresponsesensorsmall moleculesoundsynucleinopathytherapy developmenttrafficking
项目摘要
Abstract
The aggregation of a-Synuclein (a-syn) into insoluble fibrils plays a key role in the pathogenesis of
Dementia with Lewy bodies (DLB), Parkinson’s disease (PD) and other synucleinopathies. Despite the
documentation of a-synuclein as a component of Lewy body inclusions for over 25 years, there remains a
significant knowledge gap in the mechanisms that causally link protein aggregates to neurodegeneration. Recent
genetic studies have implicated the lysosomal degradation system into the pathogenesis of DLB and PD. Among
the strongest genetic risk factors are loss-of-function mutations lysosomal β-glucocerebrosidase (GCase)
encoded by GBA1, indicating that compromised lysosomal function may play a direct role in neurodegeneration.
During our previous funding period, we found that a-syn aggregates are initiated inside lysosomes by interacting
with glycosphingolipid substrates that accumulate upon loss of GCase. Once formed, these aggregates perturb
multiple, essential branches of the proteostasis pathway, including the folding in the endoplasmic reticulum (ER)
and post-ER trafficking at the cis-Golgi. This further augments a-syn aggregation, creating a self-propagating
pathogenic cycle. The previous funding period uncovered novel mechanisms and biological targets that enhance
the trafficking of hydrolases and lysosomal function. Here, we will build on our previous work to examine how a-
syn aggregates perturb protein folding in the ER, N-linked glycosylation in the ER, and the downstream effect
on lysosomal function. We will develop novel molecules to restore these key proteostasis pathways. Our studies
will employ a combination of patient-derived PD iPSC-neuron cultures, synucleinopathy mouse models, and
human brain. We previously found that a-syn accumulation in PD patient neurons induced ER fragmentation and
concealed the cell’s ability to recognize misfolded proteins in the ER, resulting in aggregation of immature
GCase. Since misfolded proteins in the ER are usually recognized by the unfolded protein response (UPR), in
aim 1, we will examine the link between the UPR, GCase solubility, and trafficking to the lysosome. We will
determine if triggering the UPR in PD can restore lysosomal function and reduce a-syn. In aim 2, we will test the
hypothesis that reduced glucose flux and protein N-glycosylation of GCase and other hydrolases contributes to
lysosomal depletion and dysfunction in PD. In aim 3, we will build upon our prior studies, which showed that
lysosomal function can be rescued by enhancing the SNARE protein ykt6. We will test novel small molecule
activators of the ykt6-lysosomal biogenesis pathway in vitro and in vivo. By studying basic biology mechanisms
of protein trafficking, we have a unique opportunity to link essential cellular proteostasis pathways to disease
pathogenesis. Our studies may impact the field by discovering novel pathogenic mechanisms, identifying new
biological targets, and further develop therapies to enhance lysosomal biogenesis to restore proteostasis in PD
and DLB.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph R Mazzulli其他文献
Joseph R Mazzulli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph R Mazzulli', 18)}}的其他基金
Exploring the Pathogenic Mechanisms of Batten's disease MFSD8 mutations using patient iPSC derived neurons.
使用患者 iPSC 衍生的神经元探索巴顿病 MFSD8 突变的致病机制。
- 批准号:
10467764 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Exploring the Pathogenic Mechanisms of Batten's disease MFSD8 mutations using patient iPSC derived neurons.
使用患者 iPSC 衍生的神经元探索巴顿病 MFSD8 突变的致病机制。
- 批准号:
10581666 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Examining the role of phosphatidylethanolamine and autophagic disruption in Lewy Body Dementias and Parkinson's disease
检查磷脂酰乙醇胺和自噬破坏在路易体痴呆和帕金森病中的作用
- 批准号:
10419671 - 财政年份:2021
- 资助金额:
$ 61.85万 - 项目类别:
Mechanisms of gene regulation and RNA processing in synucleinopathies
突触核蛋白病中的基因调控和 RNA 加工机制
- 批准号:
10650320 - 财政年份:2020
- 资助金额:
$ 61.85万 - 项目类别:
Mechanisms of gene regulation and RNA processing in synucleinopathies
突触核蛋白病中的基因调控和 RNA 加工机制
- 批准号:
10194629 - 财政年份:2020
- 资助金额:
$ 61.85万 - 项目类别:
Mechanisms of gene regulation and RNA processing in synucleinopathies
突触核蛋白病中的基因调控和 RNA 加工机制
- 批准号:
10447768 - 财政年份:2020
- 资助金额:
$ 61.85万 - 项目类别:
Exploring the role of protein farnesylation in the regulation of SNARE protein ykt6 in synucleinopathy models
探索蛋白法尼基化在突触核蛋白病模型中 SNARE 蛋白 ykt6 调节中的作用
- 批准号:
9788110 - 财政年份:2018
- 资助金额:
$ 61.85万 - 项目类别:
The role of a-synuclein accumulation in lysosomal hydrolase trafficking and function
α-突触核蛋白积累在溶酶体水解酶运输和功能中的作用
- 批准号:
9751407 - 财政年份:2015
- 资助金额:
$ 61.85万 - 项目类别:
The role of a-synuclein accumulation in lysosomal hydrolase trafficking and function
α-突触核蛋白积累在溶酶体水解酶运输和功能中的作用
- 批准号:
10659253 - 财政年份:2015
- 资助金额:
$ 61.85万 - 项目类别:
The role of a-synuclein accumulation in lysosomal hydrolase trafficking and function
α-突触核蛋白积累在溶酶体水解酶运输和功能中的作用
- 批准号:
8943319 - 财政年份:2015
- 资助金额:
$ 61.85万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 61.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 61.85万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 61.85万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 61.85万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




