A Novel Probiotic Drug Delivery Platform for Oral Administration of Protein-Based Therapies
用于口服蛋白质疗法的新型益生菌药物递送平台
基本信息
- 批准号:10544376
- 负责人:
- 金额:$ 28.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-07-14
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAnimal ModelArthritisBacteriaBiochemical PathwayBiological ProductsBiological Response Modifier TherapyBiomassBioreactorsCarbohydratesCarbonCausticsCell DensityCell RespirationCellsClinical TrialsCytochromesDNADataDevelopmentDiseaseDoseDrug Delivery SystemsEngineeringEscherichia coliEventEvolutionExhibitsFermentationFood PreservationGasesGenesGenetic EngineeringGenetic TranscriptionGoldGram-Positive BacteriaGrowthGut MucosaHalf-LifeHemeHumanImmuneImmune systemImmunologic ReceptorsImmunotherapeutic agentIn SituIndustrializationInfrastructureIntestinesLactococcusLactococcus lactisLeadMalignant NeoplasmsMediatingMetabolic PathwayMetabolismMolecularOralOral AdministrationOxidasesOxygenPathway interactionsPerformancePharmaceutical PreparationsPhasePlayProbioticsProcessProductionProductivityPropertyProtein SecretionProteinsRecombinantsRegulatory PathwayRepressionRespirationRoleSafetySiteSjogren&aposs SyndromeSpeedStressSystemTechnologyTherapeuticTherapeutic AgentsToxic effectTractionTranslatingbacterial metabolismbasecarbohydrate metabolismcostdensitydrug candidategut microbiomehost microbiomeimprovedmanufacturabilitymetabolic respirationmicrobialnovelnovel therapeuticspreclinical studypreventproduct developmentprogramsprotein expressionprotein purificationprototyperesearch clinical testingrespiratorysugarsynthetic biologytherapeutic protein
项目摘要
Project Summary
Oral delivery of protein-based drugs (‘biologics’) would vastly improve and simplify our approach to treat and
prevent disease1-4. However, biologics suffer from low stability and short half-life when administered in oral
form and are sensitive to the caustic conditions of the intestinal tract5-7. Oral delivery of biologics via bacteria
can circumvent these hurdles. Compared to conventional drug delivery systems, bacteria exhibit the
advantages of in situ production of biologicals, targeting ability, and amenability to different payloads. By
leveraging gut microbiome-host immune cell intertwining, bacteria delivery of therapeutics can also lead to
modulation of the host immune response8-10. Rise Therapeutics has pioneered the developed of novel
recombinant strains of the probiotic Lactococcus lactis demonstrating tremendous proof-of-concept for the
approach in over 15 animal models. In these studies, oral delivery of our recombinant probiotics enables
targeted engagement of specific receptors of the immune system to rebalance the host immune repertoire.
Enabled by our in-house GMP manufacturing infrastructure, these recombinant strains are now entering
human clinical testing.
Lactococcus (L.) lactis is one of the most promising bacterial platforms for biologics delivery. L. lactis is a non-
pathogenic, GRAS-designated, Gram-positive bacterium with an extraordinary safety profile in humans,
including use in genetically modified forms to delivery therapeutic protein. In addition to oral delivery of
biologics, microbial systems are a hallmark of industrial production of recombinant proteins11. Engineered L.
lactis has also been employed to express heterologous proteins for industrial applications. While E. coli is the
gold standard, Gram positive bacteria, like L. lactis are gaining traction due to much simpler purification
processes and important proteins` biochemical pathways not supported by Gram negative strains 12, 13.
However, L. lactis platform suffers from manufacturing limitations, where cellular bioreactor densities top off far
below levels require for some commercial purposes. This limitation increases cost of goods, prevents use of
higher doses in humans, and curb its use for industrial protein expression applications. Achieving high yield
densities of pure and stable recombinant bacteria is essential to enabling commercially viable and successful
product development.
To solve this challenge, we will use synthetic biology approaches to modify key growth regulatory pathways to
improve manufacturability of our promising L. lactis platform. L. lactis adapts to environmental circumstances to
survive. In a bioreactor setting, L. lactis has a controlled metabolism that permits the utilization of certain type
of sugars. When under stress, and event that typically occurs at late stage of fermentation, L. lactis switches to
an aerobic metabolism, which is detrimental to the bacteria survival. In this application, we proposed to
engineer a new L. lactis chassis with improved metabolic and respiration capacities to augment and improve
bacterial fermentation and cellular biomass.
项目概要
口服基于蛋白质的药物(“生物制剂”)将极大地改善和简化我们的治疗方法和
预防疾病1-4。然而,口服生物制剂存在稳定性低、半衰期短的问题。
形成并对肠道的腐蚀性条件敏感5-7。通过细菌口服生物制剂
可以绕过这些障碍。与传统的药物输送系统相比,细菌表现出
生物制品原位生产的优势、靶向能力以及对不同有效载荷的适应性。经过
利用肠道微生物组-宿主免疫细胞的相互缠绕,细菌传递治疗剂也可以导致
宿主免疫反应的调节8-10。 Rise Therapeutics 率先开发了新型药物
益生菌乳酸乳球菌的重组菌株展示了巨大的概念验证
超过 15 种动物模型中的方法。在这些研究中,我们的重组益生菌的口服给药使得
有针对性地参与免疫系统的特定受体,以重新平衡宿主的免疫库。
在我们内部 GMP 生产基础设施的支持下,这些重组菌株现已进入
人体临床测试。
乳酸乳球菌 (L.) 是用于生物制剂输送的最有前途的细菌平台之一。乳酸乳球菌是一种非
致病性、GRAS 指定的革兰氏阳性细菌,对人类具有非凡的安全性,
包括以转基因形式用于递送治疗性蛋白质。除了口服给药外
生物制剂、微生物系统是重组蛋白工业生产的标志11。工程L。
乳酸菌还被用来表达工业应用的异源蛋白质。虽然大肠杆菌是
金标准、革兰氏阳性细菌(如乳酸乳球菌)由于纯化更加简单而受到关注
革兰氏阴性菌株 12、13 不支持的过程和重要蛋白质生化途径。
然而,乳酸乳球菌平台受到制造限制,细胞生物反应器密度远未达到最高水平。
以下级别需要用于某些商业目的。这种限制增加了商品成本,阻碍了使用
人类的剂量更高,并限制其在工业蛋白质表达应用中的使用。实现高产
纯净且稳定的重组细菌的密度对于实现商业可行性和成功至关重要
产品开发。
为了解决这一挑战,我们将使用合成生物学方法来修改关键的生长调节途径
提高我们有前景的乳酸乳球菌平台的可制造性。乳酸乳球菌适应环境条件
存活。在生物反应器环境中,乳酸乳球菌具有受控的代谢,允许利用某些类型
糖。当处于压力下以及通常发生在发酵后期的事件时,乳酸乳球菌会切换到
有氧代谢,不利于细菌的生存。在此应用中,我们建议
设计了一种新的乳酸菌底盘,具有改进的代谢和呼吸能力,以增强和改善
细菌发酵和细胞生物量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Furlan Freguia其他文献
Christian Furlan Freguia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




