Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
基本信息
- 批准号:10545113
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAdjuvantAdjuvant StudyAdjuvant TherapyArtificial IntelligenceBayesian NetworkBiological MarkersBritish ColumbiaCD8B1 geneCellsCessation of lifeClinicalClinical DataClinical PathologyClinical ProtocolsComputer Vision SystemsComputer softwareCutaneousCutaneous MelanomaDNA Sequence AlterationDataDevelopmentElementsExposure toFluorescenceFormalinGene ExpressionGenesGenomic approachGenomicsGrowthHealth Care CostsHealth systemHematoxylin and Eosin Staining MethodImageImage AnalysisImmuneImmune systemImmunityImmunologic MarkersImmunologic SurveillanceIndividualInstitutesInstitutionInterferonsInterobserver VariabilityLocationMachine LearningMalignant NeoplasmsMeasurementMedical centerMessenger RNAMethodsMolecularMolecular ComputationsMorphologyNuclearOperative Surgical ProceduresOutcomeParaffin EmbeddingPathologistPathologyPathway AnalysisPatient CarePatient TriagePatientsPhenotypePositioning AttributePrognosisPrognostic MarkerPublishingRNARecurrenceReproducibilityRetrospective StudiesRiskRoleRoswell Park Cancer InstituteSamplingSelection BiasSkinSpatial DistributionSpeedStagingStainsStandardizationSystems BiologyT-LymphocyteTechnologyTestingTissue EmbeddingTissuesToxic effectTreatment-related toxicityTumor-Infiltrating LymphocytesTumor-infiltrating immune cellsUniversitiesUpdatebasebiosignatureclinical applicationclinical carecohortcomputerized toolscostdigitaldigital imagingdigital pathologydisorder riskfollow-upgenomic datahigh riskimprovedmachine learning modelmacrophagemedical schoolsmelanomamortality riskmulti-scale modelingnano-stringnetwork modelsprospectivequantitative imagingtranscriptometranscriptomicstumortumor growthtumor microenvironmenttumor progressiontumor-immune system interactions
项目摘要
PROJECT SUMMARY
We propose to develop a pathomics biosignature for aggressive melanoma to guide treatment decisions for
patients who have had a melanoma surgically removed but remain at high risk of recurrence and death. This is
a critical need because patients with stage II and III melanoma have an approximate 30% chance of dying of
melanoma over 10 years. Therapies have been shown to lessen recurrence risk, but they are toxic and costly.
Identifying patients who have truly been cured by the surgery and are cancer free would be tremendously useful
to guide patient care. It has been known for decades that the immune system limits melanoma progression and
that higher levels of tumor infiltrating lymphocytes (TILs) portend a favorable outcome. Assessment of TILs,
however, involves a subjective determination by the pathologist using qualitative criteria and this approach is
prone to inter-observer variability. One barrier to the development of prognostic biomarkers in early stage
melanoma is that the tumors are tiny and most dermato-pathologists require that the entire sample be formalin
fixed and paraffin embedded (FFPE) for careful morphology analysis. In order to overcome this barrier, our team
has developed and published three digital pathology methods to estimate recurrence risk. These biomarkers are
based on the hypothesis that evidence of strong immune surveillance within the tissue indicates lower recurrence
risk and include quantitation of TILs using digital software, staining for macrophages and T cells using
quantitative- immune-fluorescence (qIF), and measurement of an interferon signature using NanoString
technology. Each of these methods provides unique information about the tumor immune micro-environment.
For example, NanoString provides genomic information but does not provide spatial information regarding the
locations of specific cell phenotypes within the tumor microenvironment as qIF does. For instance, qIF revealed
the macrophages confer a poor prognosis specifically when located within the tumor stroma. In Aim 1 of the
proposal we validate three previously published biomarkers using 514 melanoma samples from Roswell
Park Comprehensive Cancer Institute, The University of British Columbia, Yale School of Medicine, and
Geisinger Health Systems. Next, in Aim 2 of the proposal we propose an integrative systems biology approach
including transcriptomic, qIF, morphology analysis of TILS, and standard clinical and pathology features to
create a multi-parameter biosignature. First, we use the raw clinical and pathomics data to build a model
multiscale biomarker network of aggressive skin melanoma. Using a Bayesian network, we identify nodes that
determine the recurrence phenotype and identify new imaging and genomic targets that may enhance the
precision of our biomarker. We then construct a composite biosignature based on this network. Finally, we test
the new biosignature, as well as the original multiply validated biomarkers from Aim 1 in prospective retrospective
fashion on samples from the E1697 trial of adjuvant interferon for which there is over 10 years of follow up. The
retrospective prospective approach removes any selection bias introduced by retrospective study.
项目总结
我们建议开发侵袭性黑色素瘤的病理组学生物标志,以指导治疗决定
黑色素瘤手术切除但仍有复发和死亡的高风险的患者。这是
非常需要,因为II和III期黑色素瘤患者有大约30%的机会死于
黑色素瘤10年以上。治疗方法已被证明可以降低复发风险,但它们毒性大,成本高。
确定真正被手术治愈并且没有癌症的患者将是非常有用的。
指导病人护理。几十年来,人们已经知道免疫系统限制黑色素瘤的进展和
较高水平的肿瘤浸润性淋巴细胞(TIL)预示着良好的结局。评估TILs,
然而,这涉及到病理学家使用定性标准的主观判断,这种方法是
容易出现观察者间的变异性。早期预测生物标记物发展的一个障碍
黑色素瘤是指肿瘤很小,大多数皮肤病理学家要求整个样本都是福尔马林。
固定和石蜡包埋(FFPE),用于仔细的形态分析。为了克服这一障碍,我们团队
已经开发并发表了三种数字病理学方法来估计复发风险。这些生物标志物是
基于这样一种假设,即有证据表明组织内的免疫监视较强,表明复发率较低
风险,包括使用数字软件对TIL进行定量,使用
定量免疫荧光(QIF)和使用纳米串测量干扰素信号
技术这些方法中的每一个都提供了关于肿瘤免疫微环境的独特信息。
例如,NanoString提供基因组信息,但不提供有关
特定细胞表型在肿瘤微环境中的位置,就像qIF一样。例如,qif透露
当巨噬细胞位于肿瘤间质内时,预后尤其差。在目标1中
建议我们使用罗斯韦尔的514个黑色素瘤样本来验证之前发表的三个生物标志物
帕克综合癌症研究所,不列颠哥伦比亚大学,耶鲁医学院,以及
盖辛格健康系统公司。接下来,在提案的目标2中,我们提出了一种综合系统生物学方法。
包括转录、QIF、TIL的形态分析以及标准的临床和病理特征
创建多参数生物签名。首先,我们使用原始的临床和病理组学数据来建立模型
侵袭性皮肤黑色素瘤的多尺度生物标志物网络。使用贝叶斯网络,我们识别出
确定复发表型并确定新的成像和基因组靶点,可能会增强
我们生物标记物的精确度。然后,我们基于该网络构造了一个复合生物签名。最后,我们测试
在前瞻性回顾中,新的生物签名以及来自AIM 1的原始多重验证生物标记物
以E1697辅助干扰素试验的样本为时尚,该试验已有10多年的跟踪调查。这个
回溯性前瞻性方法消除了回溯性研究引入的任何选择偏向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui Chang其他文献
Rui Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui Chang', 18)}}的其他基金
Applying pathomics to establish a biosignature for aggressive skin melanoma.
应用病理学建立侵袭性皮肤黑色素瘤的生物特征。
- 批准号:
10214049 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Applying pathomics to establish a biosignature for aggressive skin melanoma
应用病理学建立侵袭性皮肤黑色素瘤的生物特征
- 批准号:
10397612 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Predictive Networks-based in-silico approach for Precision Medicine-repurposing for Alzheimer's Disease
基于预测网络的精密医学方法 - 重新利用阿尔茨海默病
- 批准号:
10017130 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Building Novel Predictive Networks for high-throughput, in-silico Key Driver Prioritization to Enhance Drug Target Discovery in AMP-AD and M2OVE-AD
构建新型预测网络以实现高通量、计算机内关键驱动程序优先级排序,以增强 AMP-AD 和 M2OVE-AD 中的药物靶标发现
- 批准号:
9423217 - 财政年份:2017
- 资助金额:
-- - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
-- - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
-- - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
-- - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
-- - 项目类别: