Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
基本信息
- 批准号:10544286
- 负责人:
- 金额:$ 3.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2024-04-01
- 项目状态:已结题
- 来源:
- 关键词:Air MovementsAlgorithmsAutomobile DrivingBackBreathingCRISPR interferenceCell LineageCell TherapyCell physiologyCellsChronic Obstructive Pulmonary DiseaseComputing MethodologiesConsensusCouplingDataDecision MakingDevelopmentDifferential EquationDiseaseDisease modelEncapsulatedEndodermEndoderm CellEventFellowshipFibroblast Growth FactorFoundationsFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenetic TranscriptionGoalsHeterogeneityIndividualKnowledgeLungLung diseasesMeasurementMetabolismMethodsModelingMolecularMorphogenesisNatural regenerationPathway interactionsPersonsPluripotent Stem CellsPopulationPrevalenceProcessProtocols documentationQuality of lifeRNARNA SplicingRegulator GenesResearchRoleSOX17 geneStructure of parenchyma of lungTestingTimeTissue-Specific Gene ExpressionTrainingTranscriptTransforming Growth Factor betaUndifferentiatedVariantWorld Health Organizationcell fate specificationcell typecomputational pipelinescomputer studiesdifferentiation protocoldirected differentiationexperimental studygene interactiongene networkgene regulatory networkhuman embryonic stem cellhuman pluripotent stem cellimprovedinsightlung developmentlung injurymathematical modelmodels and simulationnovelpluripotencyprecursor cellregenerativeself-renewalsingle-cell RNA sequencingskillssmall moleculestem cell biologystem cellstemporal measurementtranscription factortransdifferentiation
项目摘要
Project Summary
The World Health Organization estimates that over 65 million people suffer from moderate to severe chronic
obstructive pulmonary disease, a condition characterized by poor airflow and restricted breathing 1. The ability
to regenerate damaged lung tissue would dramatically improve the quality of life for these individuals while
reducing the prevalence and burden of pulmonary diseases worldwide. A promising approach to this problem
is to use human pluripotent stem cells to produce lung and airway progenitor cells. Indeed, specialized
protocols have been developed to convert stem cells into definitive endoderm, a lung precursor cell type 10-19.
These protocols use small molecules to modulate the expression of key regulators of lung development
including WNT, TGFβ, BMP, and FGF; however, these protocols are limited by the inability to generate a
homogeneous population of definitive endoderm cells 11,15. This problem necessitates a better mechanistic
understanding of how individual cells transition from their pluripotent cell state into definitive endoderm.
Specifically, there is a critical need to understand how the gene regulatory networks in a given cell control its
morphogenesis, proliferation, and differentiation decisions. Therefore, with the long-term goal of increasing
homogeneity in lung precursor cells, the research objective of this fellowship is to determine how
transcriptional heterogeneity in human embryonic stem cells influences their commitment to definitive
endoderm. I hypothesize that heterogeneity in the starting population of cells generates alternate trajectories to
definitive endoderm (or other cell types) and that these differences increase over time due to mutual inhibition
between specific pairs of transcription factors (e.g., OCT4/SOX17, NANOG/GATA6). To test this hypothesis, I
will first use single-cell RNA sequencing26 to define the transcriptional heterogeneity in human pluripotent stem
cells during differentiation to definitive endoderm. I will then quantify the time-dependent changes in gene
expression for each cell using RNA velocity, a computational method that uses spliced and unspliced transcript
counts to estimate future gene expression states 28-29. Using these single-cell measurements, I will then
develop a mechanistic model of the gene regulatory networks governing differentiation to DE and validate the
model using known gene-gene interactions. Model simulations will: (1) confirm major gene regulators that drive
differentiation; (2) identify novel gene networks that control heterogeneity before and during differentiation; and
(3) reveal crosstalk among gene regulatory networks governing differentiation and other ongoing cellular
processes such as proliferation and metabolism. The proposed experimental and computational studies
provide a general framework to systematically identify gene regulatory mechanisms controlling differentiation to
definitive endoderm and aid in the development of more efficient and homogeneous
differentiation/transdifferentiation protocols for regenerative cellular therapies.
项目摘要
世界卫生组织估计,超过6500万人患有中等至重度的慢性病
阻塞性肺部疾病,这种疾病的特征是气流不良和呼吸受限1。
再生受损的肺组织将显着改善这些人的生活质量
减少全球肺部疾病的患病率和燃烧。解决这个问题的一种有希望的方法
是使用人多能干细胞产生肺和气道祖细胞。确实,专业
已经开发了方案将干细胞转化为确定的内胚层,一种肺前体细胞型10-19。
这些方案使用小分子调节肺发育的关键调节剂的表达
包括Wnt,TGFβ,BMP和FGF;但是,这些协议受到无法生成a的限制
确定的内胚层细胞的同质种群11,15。这个问题是更好的机械
了解单个细胞如何从多能细胞状态转变为确定的内胚层。
具体而言,迫切需要了解给定细胞中的基因调节网络如何控制其
形态发生,增殖和分化决策。因此,以长期目标的增加
肺前体细胞中的同质性,该研究金的研究目标是确定如何
人胚胎干细胞中的转录异质性影响其对确定性的承诺
内胚层。我假设细胞起始群体中的异质性产生了替代轨迹
确定的内胚层(或其他细胞类型),这些差异随着时间的推移而增加
在特定的转录因子对之间(例如Oct4/Sox17,Nanog/Gata6)。为了检验这一假设,我
将首先使用单细胞RNA测序26来定义人多能茎中的转录异质性
分化与确定内胚层的细胞。然后,我将量化基因的时间依赖性变化
使用RNA速度来表达每个单元格,一种使用剪接和未剪接的转录本的计算方法
估计未来基因表达的计数28-29。使用这些单细胞测量值,我将
开发一个管理分化的基因调节网络的机械模型,以验证并验证
使用已知的基因 - 基因相互作用的模型。模型模拟将:(1)确认驱动的主要基因调节剂
分化; (2)确定在分化之前和期间控制异质性的新型基因网络;和
(3)揭示了控制分化和其他持续细胞的基因调节网络之间的串扰
诸如增殖和新陈代谢之类的过程。提出的实验和计算研究
提供一个通用框架,以系统地识别控制分化为分化的基因调节机制
确定的内胚层,并有助于开发更有效和均匀的
再生性细胞疗法的分化/跨分化方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jolene Sarah Ranek其他文献
Jolene Sarah Ranek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jolene Sarah Ranek', 18)}}的其他基金
Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
- 批准号:
10618963 - 财政年份:2021
- 资助金额:
$ 3.83万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
- 批准号:
10697651 - 财政年份:2023
- 资助金额:
$ 3.83万 - 项目类别:
Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
- 批准号:
10618963 - 财政年份:2021
- 资助金额:
$ 3.83万 - 项目类别:
Navigation with complex odor dynamics: computational principles and neural circuit implementation in mice
复杂气味动力学导航:计算原理和小鼠神经回路实现
- 批准号:
10192499 - 财政年份:2020
- 资助金额:
$ 3.83万 - 项目类别:
Navigation with complex odor dynamics: computational principles and neural circuit implementation in mice
复杂气味动力学导航:计算原理和小鼠神经回路实现
- 批准号:
10634677 - 财政年份:2020
- 资助金额:
$ 3.83万 - 项目类别:
Navigation with complex odor dynamics: computational principles and neural circuit implementation in mice
复杂气味动力学导航:计算原理和小鼠神经回路实现
- 批准号:
10417160 - 财政年份:2020
- 资助金额:
$ 3.83万 - 项目类别: