Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements

从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络

基本信息

  • 批准号:
    10544286
  • 负责人:
  • 金额:
    $ 3.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-02 至 2024-04-01
  • 项目状态:
    已结题

项目摘要

Project Summary The World Health Organization estimates that over 65 million people suffer from moderate to severe chronic obstructive pulmonary disease, a condition characterized by poor airflow and restricted breathing 1. The ability to regenerate damaged lung tissue would dramatically improve the quality of life for these individuals while reducing the prevalence and burden of pulmonary diseases worldwide. A promising approach to this problem is to use human pluripotent stem cells to produce lung and airway progenitor cells. Indeed, specialized protocols have been developed to convert stem cells into definitive endoderm, a lung precursor cell type 10-19. These protocols use small molecules to modulate the expression of key regulators of lung development including WNT, TGFβ, BMP, and FGF; however, these protocols are limited by the inability to generate a homogeneous population of definitive endoderm cells 11,15. This problem necessitates a better mechanistic understanding of how individual cells transition from their pluripotent cell state into definitive endoderm. Specifically, there is a critical need to understand how the gene regulatory networks in a given cell control its morphogenesis, proliferation, and differentiation decisions. Therefore, with the long-term goal of increasing homogeneity in lung precursor cells, the research objective of this fellowship is to determine how transcriptional heterogeneity in human embryonic stem cells influences their commitment to definitive endoderm. I hypothesize that heterogeneity in the starting population of cells generates alternate trajectories to definitive endoderm (or other cell types) and that these differences increase over time due to mutual inhibition between specific pairs of transcription factors (e.g., OCT4/SOX17, NANOG/GATA6). To test this hypothesis, I will first use single-cell RNA sequencing26 to define the transcriptional heterogeneity in human pluripotent stem cells during differentiation to definitive endoderm. I will then quantify the time-dependent changes in gene expression for each cell using RNA velocity, a computational method that uses spliced and unspliced transcript counts to estimate future gene expression states 28-29. Using these single-cell measurements, I will then develop a mechanistic model of the gene regulatory networks governing differentiation to DE and validate the model using known gene-gene interactions. Model simulations will: (1) confirm major gene regulators that drive differentiation; (2) identify novel gene networks that control heterogeneity before and during differentiation; and (3) reveal crosstalk among gene regulatory networks governing differentiation and other ongoing cellular processes such as proliferation and metabolism. The proposed experimental and computational studies provide a general framework to systematically identify gene regulatory mechanisms controlling differentiation to definitive endoderm and aid in the development of more efficient and homogeneous differentiation/transdifferentiation protocols for regenerative cellular therapies.
项目摘要 世界卫生组织估计,超过6500万人患有中度至重度慢性 阻塞性肺疾病,一种以气流不畅和呼吸受限为特征的疾病1。的能力 再生受损的肺组织将大大改善这些人的生活质量, 降低全球肺部疾病的患病率和负担。解决这个问题的一个有希望的方法 是利用人类多能干细胞来生产肺和气道祖细胞。事实上, 已经开发了将干细胞转化为定形内胚层(一种肺前体细胞类型10-19)的方案。 这些方案使用小分子来调节肺发育的关键调节因子的表达 包括WNT、TGFβ、BMP和FGF;然而,这些方案受限于不能产生 定形内胚层细胞的同质群体11,15。这个问题需要一个更好的机制 了解单个细胞如何从多能细胞状态转变为定形内胚层。 具体地说,迫切需要了解给定细胞中的基因调控网络如何控制其表达。 形态发生、增殖和分化决定。因此,随着长期目标的增加, 肺前体细胞的同质性,这项研究的目的是确定如何 人胚胎干细胞的转录异质性影响其对决定性分化的承诺 内胚层我假设,细胞初始群体的异质性产生了交替的轨迹, 定形内胚层(或其他细胞类型),并且由于相互抑制,这些差异随时间增加 在特定的转录因子对之间(例如,OCT 4/SOX 17、NANOG/GATA 6)。为了验证这个假设,我 将首先使用单细胞RNA测序26来定义人类多能干细胞中的转录异质性, 细胞分化为定形内胚层。然后我将量化基因的时间依赖性变化, 使用RNA速度计算每个细胞的表达,这是一种使用剪接和未剪接转录本的计算方法, 计数以估计未来基因表达状态28-29。利用这些单细胞测量, 开发管理向DE分化的基因调控网络的机制模型并验证 使用已知的基因-基因相互作用模型。模型模拟将:(1)确认主要的基因调控,驱动 (2)鉴定在分化之前和分化期间控制异质性的新基因网络;以及 (3)揭示了控制分化的基因调控网络和其他正在进行的细胞 如增殖和代谢过程。建议的实验和计算研究 提供了一个总体框架,以系统地鉴定控制分化的基因调控机制, 确定内胚层和援助的发展更有效和均匀 用于再生细胞疗法的分化/转分化方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jolene Sarah Ranek其他文献

Jolene Sarah Ranek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jolene Sarah Ranek', 18)}}的其他基金

Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
  • 批准号:
    10618963
  • 财政年份:
    2021
  • 资助金额:
    $ 3.83万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了