mDOT TR&D3 (Translation): Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware Biomarker Implementations

mDOT TR

基本信息

  • 批准号:
    10541810
  • 负责人:
  • 金额:
    $ 28.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Principal Investigator: Kumar, Santosh TR&D3: Translation of Temporally Precise mHealth via Efficient and Embeddable Privacy-aware Biomarker Implementations Lead: Dr. Emre Ertin, The Ohio State University; 10% effort (1.2 CM) Abstract: The mHealth Center for Discovery, Optimization & Translation of Temporally-Precise Interventions (the mDOT Center) will enable a new paradigm of temporally-precise medicine to maintain health and manage the growing burden of chronic diseases. The mDOT Center will develop and disseminate the methods, tools, and infrastructure necessary for researchers to pursue the discovery, optimization and translation of temporally- precise mHealth interventions. Such interventions, when dynamically personalized to the moment-to-moment biopsychosocial-environmental context of each individual, will precipitate a much-needed transformation in healthcare by enabling patients to initiate and sustain the healthy lifestyle choices necessary for directly managing, treating, and in some cases even preventing the development of medical conditions. Organized around three Technology Research & Development (TR&D) projects, mDOT represents a unique national resource that will develop multiple methodological and technological innovations and support their translation into research and practice by the mHealth community in the form of easily deployable wearables, apps for wearables and smartphones, and a companion mHealth cloud system, all open-source. TR&D3 will develop, validate and disseminate algorithms, tools and software/hardware designs for translation of temporally-precise mHealth interventions through resource efficient, real time, low-latency and privacy-aware implementation of an array of digital biomarkers that can be deployed at scale. Our approach is centered around a hierarchical computing framework that reduces the data into minimal modular abstractions called Micromarkers computed at the edge devices (Aim 1). Modular Micromarker abstractions are used to compress task-specific information relevant to biomarker computations at the edge devices while stripping nuisance variables such as hardware biases/drifts and background levels not pertinent to inference. Our hierarchical computing framework can be extended to implement high data rate sensor arrays at edge devices to be used at new point of care and ambulatory settings. This is accomplished through integrating a compressive sensing pre-processor to achieve signal acquisition in a resource constrained setting (Aim 2). Finally, TR&D3 will create computational mechanisms and a general biomarker privacy framework to enable participant control over the privacy-utility trade-offs during study design, data collection, and sharing of collected mHealth data for third party research when data cross trust domains (Aim 3). These technologies will be developed in collaboration with collaborative projects and will be disseminated to service projects to ensure that TR&D3 technologies can solve real problems facing the health research community and ensure the usability of these technologies by investigators who are external to the mDOT investigating team. TR&D3 will synergistically work in partnership with the other TR&D projects, the Training and Dissemination Core, and the Administration Core to maximize the societal impact of TR&D3 technologies. 1
首席调查员:库马尔,桑托什

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emre Ertin其他文献

Emre Ertin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emre Ertin', 18)}}的其他基金

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 28.14万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 28.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了