High resolution modeling and design of immune recognition
免疫识别的高分辨率建模和设计
基本信息
- 批准号:10543798
- 负责人:
- 金额:$ 34.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAlgorithmsAntibodiesAntibody AffinityAntibody SpecificityAntigen TargetingAntigensAreaBenchmarkingCodeCollaborationsCommunitiesComplexComputational BiologyDataData SetDatabasesDiseaseDockingImmuneImmune responseImmunoglobulinsImmunologic ReceptorsImmunological ModelsLaboratoriesLeadMedicalMethodsModelingMolecular ConformationPeptide/MHC ComplexResolutionSpecificityStructureT-Cell ReceptorT-cell diversityTherapeuticUpdateVirusWorkantigen bindingdeep learningdesignflexibilityimprovedinterestknowledge baselearning strategymachine learning methodprediction algorithmtoolweb server
项目摘要
Project Summary:
Accurate modeling of immune receptors and their recognition is a major challenge in computational biology, of
direct relevance to many diseases and therapeutics. While they share common heterodimeric immunoglobulin
folds, the immense sequence diversities of T cell receptors (TCRs) and antibodies lead to an astounding range
of antigen binding modes and specificities. Current docking approaches are largely incapable of producing
near-native models of these complexes in the set of top-ranked predictions, and conformational flexibility of
TCR and antibody loops pose a major barrier to predictive algorithms. My laboratory has had a longstanding
interest in developing and applying algorithms to better model and design TCRs and antibodies. We recently
developed an algorithm and web server to model TCRs from sequence (TCRmodel), a database of TCR
structures and sequences (TCR3d), and we have assembled an updated docking benchmark, which is being
used to develop improvements to our TCR docking algorithm. We have also recently developed an updated
antibody-antigen docking and affinity benchmark, which more than doubles the size of the previous benchmark
release; we have performed docking and affinity prediction assessment on these cases, giving us a rich
dataset of models and scores. During the next five years, we plan to expand and capitalize on these datasets
to develop advanced knowledge-based tools and algorithms, including geometric deep learning methods, to
address major challenges in this area: reliable modeling of CDR3 loop structures, accurate predictive antibody-
antigen and TCR-peptide-MHC docking, and design of TCR and antibody targeting. This will result in the ability
to model TCR and antibody interaction structures from sequence, precise control of TCR and antibody affinity
and specificity, and the design of new interactions to target antigens of interest. We will release our methods
and results to the community as web servers, databases, and code. This work will be enhanced by
collaborations with leading laboratories, through which we will have access to new experimental structural,
dynamic, and affinity data which will be used to develop, apply, and validate our algorithms.
项目概要:
免疫受体及其识别的精确建模是计算生物学中的主要挑战,
与许多疾病和治疗方法直接相关。虽然它们具有共同的异源二聚体免疫球蛋白
折叠,T细胞受体(TCR)和抗体的巨大序列差异导致了惊人的范围
抗原结合模式和特异性。目前的对接方法在很大程度上无法产生
这些复合物的近天然模型在一组排名靠前的预测,和构象的灵活性
TCR和抗体环是预测算法的主要障碍。我的实验室长期以来
对开发和应用算法以更好地建模和设计TCR和抗体感兴趣。我们最近
开发了一种算法和网络服务器,从序列中建模TCR(TCR模型),TCR数据库
结构和序列(TCR 3d),我们已经组装了更新的对接基准,正在进行中
用于改进TCR对接算法。我们最近还开发了一个更新的
抗体-抗原对接和亲和力基准,其大小是先前基准的两倍多
发布;我们对这些案例进行了对接和亲和力预测评估,为我们提供了丰富的
模型和分数的数据集。在接下来的五年里,我们计划扩大和利用这些数据集
开发先进的基于知识的工具和算法,包括几何深度学习方法,
解决这一领域的主要挑战:可靠的CDR 3环结构建模,准确的预测抗体,
抗原和TCR-肽-MHC对接,以及TCR和抗体靶向设计。这将导致
从序列中建模TCR和抗体相互作用结构,精确控制TCR和抗体亲和力
和特异性,以及设计与目标抗原的新相互作用。我们将公布我们的方法
并将结果作为Web服务器、数据库和代码提供给社区。这项工作将得到加强,
与领先的实验室合作,通过这些实验室,我们将获得新的实验结构,
动态和亲和性数据,将用于开发,应用和验证我们的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian G. Pierce其他文献
Biophysical Basis of KDEL Receptor-Lipid Interactions in Secretory Signaling
- DOI:
10.1016/j.bpj.2020.11.1427 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Asma Rehman;Amanda Altieri;Wenbo Yu;Stefan M. Ivanov;Brian G. Pierce;Alexander D. MacKerell;Syed Saif Hasan - 通讯作者:
Syed Saif Hasan
Cryo-EM structures of HCV E2 glycoprotein bound to neutralizing and non-neutralizing antibodies determined using bivalent Fabs as fiducial markers
使用二价 Fab 作为基准标记确定的与中和性和非中和性抗体结合的丙型肝炎病毒 E2 糖蛋白的冷冻电镜结构
- DOI:
10.1038/s42003-025-08239-w - 发表时间:
2025-05-29 - 期刊:
- 影响因子:5.100
- 作者:
Salman Shahid;Sharanbasappa S. Karade;S. Saif Hasan;Rui Yin;Liqun Jiang;Yanxin Liu;Nathaniel Felbinger;Liudmila Kulakova;Eric A. Toth;Zhen-Yong Keck;Steven K. H. Foung;Thomas R. Fuerst;Brian G. Pierce;Roy A. Mariuzza - 通讯作者:
Roy A. Mariuzza
A comprehensive engineering strategy improves potency and manufacturability of a near pan-neutralizing antibody against HIV
- DOI:
10.1016/j.str.2025.04.016 - 发表时间:
2025-07-03 - 期刊:
- 影响因子:4.300
- 作者:
Mohammad M. Sajadi;Abdolrahim Abbasi;Zahra Rikhtegaran Tehrani;Christine Siska;Rutilio Clark;Woo Chi;Michael S. Seaman;Dieter Mielke;Kshitij Wagh;Qingbo Liu;Taylor Jumpa;Randal R. Ketchem;Dung N. Nguyen;William D. Tolbert;Brian G. Pierce;Ben Atkinson;Derrick Deming;Megan Sprague;Andrew Asakawa;David Ferrer;Anthony DeVico - 通讯作者:
Anthony DeVico
Brian G. Pierce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian G. Pierce', 18)}}的其他基金
High resolution modeling and design of immune recognition
免疫识别的高分辨率建模和设计
- 批准号:
10330807 - 财政年份:2022
- 资助金额:
$ 34.41万 - 项目类别:
High Resolution Modeling and Design of T-Cell Receptors
T 细胞受体的高分辨率建模和设计
- 批准号:
9759968 - 财政年份:2018
- 资助金额:
$ 34.41万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Continuing Grant