Optimizing Patient-Specific Deep Brain Stimulation Models Using Electrophysiology
利用电生理学优化患者特异性深部脑刺激模型
基本信息
- 批准号:10543471
- 负责人:
- 金额:$ 51.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnatomyApplications GrantsAreaAtlasesAxonBiomedical EngineeringBiophysicsBrainChronicClinicClinicalClinical ResearchComputer ModelsContralateralDataDeep Brain StimulationDevelopmentDistalElectric StimulationElectrical Stimulation of the BrainElectrodesElectrophysiology (science)EncapsulatedEvoked PotentialsFaceGoalsHumanImageImplantLimb structureMagnetic Resonance ImagingMeasurementMeasuresMethodologyMethodsModelingMotorMotor Evoked PotentialsMuscleNeural PathwaysNeuronsOperative Surgical ProceduresOutcomeParkinson DiseasePathway interactionsPatientsPatternPeripheralPhysiologic pulsePositioning AttributePostoperative PeriodResearchResearch PersonnelResearch Project GrantsSourceStimulusStructureSurveysSystemTestingTissuesVariantVisualWidthbiophysical modelclinical developmentclinical practiceclinical predictorscohortdriving forceelectric fieldexperimental studyimprovedin vivoindividual patientinsightmodel developmentmodels and simulationmultidisciplinaryneuralneural stimulationneuropsychiatric disorderpredictive modelingrecruitresponseside effectsimulation
项目摘要
PROJECT SUMMARY/ABSTRACT
Patient-specific computational models of deep brain stimulation (DBS) have been used to understand the effects
of electrical stimulation on brain structures and pathways in Parkinson's disease (PD) and other neuropsychiatric
disorders. These 3-dimensional (3-D), image-based, biophysical models provide a visual representation of neu-
ronal activation patterns around the DBS electrode and in connected distal regions. As a result, they are con-
ceptually attractive in both clinical practice (for targeting and postoperative programming) and in research (for
mechanistic insights and hypotheses development). However, despite their widespread use in research, and
recent introduction into clinical practice, the direct assessment of model accuracy is lacking. At present, it is
unknown if the spatial extent of stimulation effects predicted by the patient-specific computational DBS models
reflect genuine neuronal activations in the human brain. Consequently, recent clinical studies have shown poor
correlations between predictions from simple volume of tissue activation (VTA) DBS models and general PD
clinical outcomes. Driving force (DF) predictor DBS models incorporate more realistic axonal trajectories into the
local anatomy; however, it is unclear if the additional complexity of DF models improves the clinical accuracy of
the simulations. To test this, we have developed an experimental paradigm to quantify the degree of axonal
pathway activation by subthalamic DBS in PD patients. Intracranial cortical evoked potentials (cEP) and periph-
eral motor evoked potentials (mEP) can differentiate activation of several neighboring neural pathways by DBS.
Modulation of DBS settings (active contacts, amplitude, pulse width) alters the amplitude of cEP and mEP.
Therefore, by changing the DBS settings, pathway recruitment can be quantified, and the activation predictions
for different modeling methods can be compared. The goal of this Bioengineering Research Grant proposal is to
determine the accuracy of patient-specific DBS models (VTA and DF) compared to in-vivo electrophysiologic
measurements in PD patients. We hypothesize that DF models are more biophysically accurate than VTA mod-
els. We will test this using two different electrophysiological measurements (cEP in Aim1; mEP in Aim2), and we
will identify which model components are the most critical to the model simulations. In Aim 3 we will compare
neural pathway activations predicted by the models to clinical DBS side effects (resulting from corticospi-
nal/bulbar tract activation that can be experimentally measured and predicted by the models). This will allow us
to determine the level of model accuracy that is necessary for clinical use in individual patients. The optimal
modeling approach systematically characterized in this proposal will provide the first validated standard for clin-
ical and research applications of DBS models.
项目总结/摘要
脑深部电刺激(DBS)的患者特定计算模型已被用于了解效果
电刺激对帕金森病(PD)和其他神经精神疾病患者大脑结构和通路的影响
紊乱这些三维(3-D),基于图像的,生物物理模型提供了一个视觉表示的神经,
DBS电极周围和连接的远端区域中的神经激活模式。因此,他们被控-
在临床实践(靶向和术后编程)和研究(
机械的见解和假说的发展)。然而,尽管它们在研究中被广泛使用,
最近引入到临床实践中,缺乏对模型准确性的直接评估。目前是
不清楚患者特定计算DBS模型预测的刺激效应的空间范围
反映了人脑中真正的神经元激活。因此,最近的临床研究表明,
简单组织激活体积(VTA)DBS模型预测与一般PD之间的相关性
临床结果。驱动力(DF)预测器DBS模型将更真实的轴突轨迹纳入到神经元模型中。
局部解剖结构;然而,尚不清楚DF模型的额外复杂性是否提高了
模拟。为了验证这一点,我们开发了一种实验范式来量化轴突的程度。
帕金森病患者丘脑底DBS激活神经通路。颅内皮层诱发电位(cEP)和外周-
运动诱发电位(mEP)可以区分DBS对邻近神经通路的激活。
DBS设置(活动触点、振幅、脉冲宽度)的调制会改变cEP和mEP的振幅。
因此,通过改变DBS设置,可以量化通路募集,并且激活预测
不同的建模方法可以进行比较。这项生物工程研究补助金提案的目标是
确定与体内电生理相比,患者特定DBS模型(VTA和DF)的准确性
在PD患者中进行测量。我们假设DF模型比VTA模型在生物病理学上更准确,
埃尔。我们将使用两种不同的电生理测量(Aim 1中的cEP; Aim 2中的mEP)来测试这一点,我们
将确定哪些模型组件对模型模拟最关键。在目标3中,我们将比较
模型预测的神经通路激活与临床DBS副作用(由皮质类固醇引起)之间的关系,
可以通过模型实验测量和预测的NAL/延髓束激活)。这将使我们
以确定个体患者临床使用所需的模型准确度水平。最优
该提案中系统描述的建模方法将为临床提供第一个经过验证的标准,
DBS模型的临床和研究应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svjetlana Miocinovic其他文献
Svjetlana Miocinovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svjetlana Miocinovic', 18)}}的其他基金
Optimizing Patient-Specific Deep Brain Stimulation Models Using Electrophysiology
利用电生理学优化患者特异性深部脑刺激模型
- 批准号:
10343183 - 财政年份:2022
- 资助金额:
$ 51.05万 - 项目类别:
“Cortical electrophysiology of response inhibition and implications for DBS therapy in patients
Ø 反应抑制的皮层电生理学及其对患者 DBS 治疗的影响
- 批准号:
10284850 - 财政年份:2021
- 资助金额:
$ 51.05万 - 项目类别:
“Cortical electrophysiology of response inhibition and implications for DBS therapy in patients
Ø 反应抑制的皮层电生理学及其对患者 DBS 治疗的影响
- 批准号:
10495230 - 财政年份:2021
- 资助金额:
$ 51.05万 - 项目类别:
Targeted activation of select neural pathways by deep brain stimulation in patients with Parkinson's disease
通过深部脑刺激靶向激活帕金森病患者的特定神经通路
- 批准号:
9769892 - 财政年份:2016
- 资助金额:
$ 51.05万 - 项目类别:
Targeted activation of select neural pathways by deep brain stimulation in patients with Parkinson's disease
通过深部脑刺激靶向激活帕金森病患者的特定神经通路
- 批准号:
10458233 - 财政年份:2016
- 资助金额:
$ 51.05万 - 项目类别:
Targeted activation of select neural pathways by deep brain stimulation in patients with Parkinson's disease
通过深部脑刺激靶向激活帕金森病患者的特定神经通路
- 批准号:
9162516 - 财政年份:2016
- 资助金额:
$ 51.05万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 51.05万 - 项目类别:
Studentship