Defining the function and mechanism of regulatory ribosomal ubiquitylation
定义调节性核糖体泛素化的功能和机制
基本信息
- 批准号:10543532
- 负责人:
- 金额:$ 35.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAgingBiogenesisBiological ModelsCell LineCellsCellular StressChronicCodeCompensationComplexDefectDependenceDevelopmentDiseaseDisease ProgressionDissectionEnzymesEventExcisionExposure toFunctional disorderGene ExpressionGeneticGoalsHumanHuman PathologyImmunologic StimulationIndividualInterventionLinkLongevityMapsMediatingMessenger RNAMethodsMolecularNeurodegenerative DisordersNeurologic DysfunctionsOutcomeOutcomes ResearchPathologyPathway interactionsPersonsPhysiologicalPlayPopulationPrevalenceProcessProductionProtein BiosynthesisProteinsProteomeQuality ControlRNA DecayReagentRecoveryRegulationResearchRibonucleasesRibosomal ProteinsRibosomesRoleShapesSiteStressStructureSystemTherapeuticToxic effectTranslatingTranslation InitiationTranslational RegulationTranslational RepressionTranslationsTriageUbiquitinVaccinia virusVirus Replicationbiological adaptation to stressexperimental studyfitnessfunctional outcomesgenome editingimprovedinnate immune pathwaysmRNA DecaymRNA Transcript DegradationmRNA Translationnervous system disorderoverexpressionpathogenpharmacologicposttranscriptionalproteostasisproteotoxicityresponseribosome profilingtranslational impactubiquitin ligase
项目摘要
PROJECT SUMMARY
Protein homeostasis (proteostasis) relies on the continual surveillance and removal of defective translation
products resulting from the relatively high error rates associated with mRNA translation. Proteostasis
dysfunction has been implicated in human aging-related pathologies, including many neurodegenerative
disorders, suggesting that molecular strategies to either limit the production of erroneous translation products
or elevate protein quality control capacity may provide therapeutic benefit. As such, characterizing cellular
mechanisms that regulate translation activity or ribosome-associated quality control function is needed to
enable molecular control over proteostasis under normal and stress conditions. We have discovered
conserved, site-specific, regulatory ribosomal ubiquitylation (RRub) events on individual 40S ribosomal
proteins that represent a new axis of translational control. Our objective is to determine the molecular
mechanisms by which RRub impacts ribosome-associated quality control and the integrated stress response
pathway. Toward this goal, we have identified the critical ubiquitin ligases and deubiquitylating enzymes that
mediate these RRub events. We have generated a unique and powerful set of genome-edited cell lines that
will enable molecular dissection of RRub and the cellular pathways which require RRub for proper function.
Our hypothesis is that manipulation of RRub machinery can be utilized to alter translation both during and
following acute proteotoxic stress. Furthermore, we hypothesize that cells with elevated translation activity
and/or elevated levels of damaged or cleaved mRNAs will require enhanced quality control activity for function
and survival. To probe these hypotheses, we will: (1) dissect ubiquitin-dependent and independent
mechanisms within the ribosome-associated quality control pathway; (2) determine physiologically-relevant
cellular conditions that require elevated RQC activity; and (3) characterize how RRub reshapes translation at
steady-state and during activation and recovery of the integrated stress response. Research outcomes
achieved by the proposed studies will mechanistically determine how terminally stalled ribosomes are sensed
and resolved via the RQC pathway. We will also define how RRub alters stress response pathways through
regulation of ribosome abundance or translation activity. Several ribosomal proteins and translation-associated
factors are regulatory ubiquitylation targets which suggests that our research strategy can be broadly applied
to other targets to enable protein biogenesis control at multiple steps. Successful completion of the proposed
research will provide substantial progress toward our long-term goal of combating aging-associated human
pathology through the development of molecular strategies to modify cellular responses to chronic proteotoxic
stress and improve cellular fitness following proteostasis insults.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric J Bennett其他文献
Hematopoietic Stem Cells Depend upon Aggrephagy to Maintain Protein Homeostasis and Self-Renewal Activity
- DOI:
10.1182/blood-2022-163857 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Bernadette Anne Chua;Connor J Lennan;Mary Jean Sunshine;Ashu Chawla;Lorena H San Jose;Daniela Dreifke;Eric J Bennett;Robert Signer - 通讯作者:
Robert Signer
How degrading! Trapped translation factors get trashed.
多么有辱人格啊!
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.8
- 作者:
Pierce W Ford;Eric J Bennett - 通讯作者:
Eric J Bennett
Simply quantifying ubiquitin complexity
仅仅量化泛素的复杂性
- DOI:
10.1038/nmeth.1651 - 发表时间:
2011-07-28 - 期刊:
- 影响因子:32.100
- 作者:
Eric J Bennett;J Wade Harper - 通讯作者:
J Wade Harper
Eric J Bennett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric J Bennett', 18)}}的其他基金
Leveraging ubiquitin-dependent regulatory mechanisms to improve proteome quality in health and disease
利用泛素依赖性调节机制提高健康和疾病中的蛋白质组质量
- 批准号:
10552479 - 财政年份:2023
- 资助金额:
$ 35.17万 - 项目类别:
Defining the function and mechanism of regulatory ribosomal ubiquitylation
定义调节性核糖体泛素化的功能和机制
- 批准号:
10319621 - 财政年份:2021
- 资助金额:
$ 35.17万 - 项目类别:
Leveraging orphan protein degradation pathways to target cells with unstable proteomes
利用孤儿蛋白降解途径靶向具有不稳定蛋白质组的细胞
- 批准号:
10004157 - 财政年份:2018
- 资助金额:
$ 35.17万 - 项目类别:
Leveraging orphan protein degradation pathways to target cells with unstable proteomes
利用孤儿蛋白降解途径靶向具有不稳定蛋白质组的细胞
- 批准号:
10251955 - 财政年份:2018
- 资助金额:
$ 35.17万 - 项目类别:
相似海外基金
Replication Stress and Ribosome Biogenesis in Hematopoietic Stem Cell Aging
造血干细胞衰老中的复制应激和核糖体生物合成
- 批准号:
10529275 - 财政年份:2021
- 资助金额:
$ 35.17万 - 项目类别:
Replication Stress and Ribosome Biogenesis in Hematopoietic Stem Cell Aging
造血干细胞衰老中的复制应激和核糖体生物合成
- 批准号:
10684178 - 财政年份:2021
- 资助金额:
$ 35.17万 - 项目类别:
Replication Stress and Ribosome Biogenesis in Hematopoietic Stem Cell Aging
造血干细胞衰老中的复制应激和核糖体生物合成
- 批准号:
10314933 - 财政年份:2021
- 资助金额:
$ 35.17万 - 项目类别:
Mitochondrial biogenesis, genetics and cell loss in mammalian aging
哺乳动物衰老过程中的线粒体生物发生、遗传学和细胞损失
- 批准号:
10188372 - 财政年份:2018
- 资助金额:
$ 35.17万 - 项目类别:
Mitochondrial biogenesis, genetics and cell loss in mammalian aging
哺乳动物衰老过程中的线粒体生物发生、遗传学和细胞损失
- 批准号:
10447765 - 财政年份:2018
- 资助金额:
$ 35.17万 - 项目类别:
Mitochondrial biogenesis, genetics and cell loss in mammalian aging
哺乳动物衰老过程中的线粒体生物发生、遗传学和细胞损失
- 批准号:
9767003 - 财政年份:2018
- 资助金额:
$ 35.17万 - 项目类别:
Mitophagy and lysosomal biogenesis in aging muscle
衰老肌肉中的线粒体自噬和溶酶体生物发生
- 批准号:
371850 - 财政年份:2017
- 资助金额:
$ 35.17万 - 项目类别:
Operating Grants
Mitochondrial biogenesis, genetics and cell loss in mammalian aging
哺乳动物衰老过程中的线粒体生物发生、遗传学和细胞损失
- 批准号:
9940855 - 财政年份:2017
- 资助金额:
$ 35.17万 - 项目类别:
Mitochondrial biogenesis, genetics and cell loss in mammalian aging
哺乳动物衰老过程中的线粒体生物发生、遗传学和细胞损失
- 批准号:
10443536 - 财政年份:2017
- 资助金额:
$ 35.17万 - 项目类别:
Mitochondrial biogenesis, genetics and cell loss in mammalian aging
哺乳动物衰老过程中的线粒体生物发生、遗传学和细胞损失
- 批准号:
9285634 - 财政年份:2017
- 资助金额:
$ 35.17万 - 项目类别: