Causal machine learning methods for studying the effects of environmental exposures on childhood cancer using natural experiments
使用自然实验研究环境暴露对儿童癌症影响的因果机器学习方法
基本信息
- 批准号:10549353
- 负责人:
- 金额:$ 13.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:1,3-ButadieneAccountingAddressAdultAffectAirAreaAwardBayesian learningBenzeneBiologicalBiologyCancer BiologyCase/Control StudiesCellular biologyChemicalsChildChild HealthChildhood LeukemiaCodeCohort StudiesCommunitiesComputer softwareDNA Sequence AlterationDataData ScienceDeveloped CountriesDevelopmentDisciplineEducational workshopEnsureEnvironmentEnvironmental ExposureEnvironmental HealthEpidemiologyEventExposure toFoundationsFundingGasolineGoalsHealthHeterogeneityHomeIncidenceInvestigationKnowledgeLearningLiteratureMachine LearningMalignant Childhood NeoplasmMeasuresMedicalMentorsMentorshipMethodologyMethodsModelingNatural experimentOccupational ExposureOutcomePediatric OncologyPlayPositioning AttributePredispositionProcessProliferatingRegulationReproducibilityResearchResearch DesignResourcesRisk FactorsRoleScienceSeriesSocial SciencesSocietiesSourceTimeTime trendTrainingUnited States Environmental Protection AgencyWorkcancer epidemiologycareer developmentcase controlcohorteducational atmosphereenvironmental agentepidemiology studyexhaustexperienceexperimental analysishealth applicationhealth datainnovationinsightknowledge integrationleukemiamachine learning methodmachine learning modelmortalityneoplasm registryopen sourcepostnatalprenatalprenatal exposureprogramssimulationskillsstatisticssymposiumtoolusabilityuser-friendly
项目摘要
Project Summary:
My goal is to build an independent research program in the development of causal inference methods for
investigating environmental causes of childhood cancer. This K01 will enable me to conduct the focused,
intensive research that will lay the groundwork for that program and to acquire the environmental, biological,
and epidemiological training needed to maximize the rigor and impact of my work.
Research: We propose to develop new causal machine learning (ML) methods that enable rigorous analysis
of environmental natural experiments (NE) for estimation of the causal effects of environmental exposures on
childhood cancer. Classical approaches to studying relationships between environmental exposures and
childhood cancer are plagued with challenges and are yielding inconsistent findings. We contend that the
recent proliferation of local environmental regulatory programs has created ample relevant NEs, which provide
a powerful alternative approach to study these relationships. However, existing methods for NE analysis are
poorly-suited for environmental health contexts. In particular, existing methods fail in the presence of rare
outcomes like childhood cancer (Aim 1), and they are not able to provide insight into the timing at which
children are most susceptible to any adverse exposure effects (Aim 2). We propose causal ML methods that
overcome these challenges and apply them to a NE to study the effects of traffic-related air toxics on childhood
leukemia. We also provide open source software implementing these methods (Aim 3).
Career Development and Training: Given my extensive prior training and experience in statistics and data
science, the primary aim of the training funded by this award will be the acquisition of subject-matter
proficiency, which will provide me with the insights needed to create more effective and impactful
environmental health methods. Specifically, I will pursue knowledge in the biology and epidemiology of
childhood cancer and in environmental health and exposure biology. The training will be achieved through a
combination of (1) hands-on collaborative research as described above; (2) intensive cross-disciplinary
mentorship, with mentors specializing in environmental health, pediatric oncology, cancer biology and
epidemiology, and statistics; (3) carefully-selected coursework in the Departments of Epidemiology,
Environmental Health, and Cell Biology at Harvard; and (4) relevant conferences, workshops, and seminars. I
will place special emphasis on establishing a network of expert collaborators in all my areas of training.
Environment: The Harvard Medical Campus is home to the top research teams worldwide in both childhood
cancer and environmental health. Due to Harvard’s position at the forefront of scientific discovery in these
fields, its unparalleled resources, its vibrant intellectual atmosphere, and its promotion of collaborative science
that integrates knowledge across disciplines, it provides an ideal environment in which to train on these topics.
项目总结:
我的目标是在开发因果推理方法方面建立一个独立的研究计划
调查儿童癌症的环境原因。这款K01将使我能够进行专注的、
密集的研究将为该计划奠定基础,并获得环境、生物、
以及流行病学培训,以最大限度地提高我的工作的严谨性和影响力。
研究:我们建议开发新的因果机器学习(ML)方法,使严格的分析成为可能
环境自然实验(NE),用于估计环境暴露的因果影响
儿童癌症。研究环境暴露与环境污染之间关系的经典方法
儿童癌症充满了挑战,并产生了不一致的结果。我们认为,
最近地方环境监管方案的激增创造了大量相关的NE,它们提供了
这是研究这些关系的一种强有力的替代方法。然而,现有的NE分析方法是
不适合环境健康环境。特别是,现有的方法在罕见的情况下会失败
结果,如儿童癌症(目标1),他们无法提供洞察力的时间
儿童最容易受到任何不良暴露影响(目标2)。我们提出因果最大似然方法
克服这些挑战,并将其应用于东北地区,以研究与交通相关的空气毒物对儿童的影响
白血病。我们还提供了实现这些方法的开源软件(目标3)。
职业发展和培训:考虑到我之前在统计和数据方面的广泛培训和经验
科学,该奖项资助的培训的主要目的将是获得主题
熟练,这将为我提供所需的洞察力,以创造更有效和更有影响力的
环境卫生方法。具体地说,我将学习生物学和流行病学方面的知识。
儿童癌症和环境健康与暴露生物学。培训将通过以下方式实现
结合(1)如上所述的动手合作研究;(2)密集的跨学科
导师制,导师专门从事环境健康、儿科肿瘤学、癌症生物学和
流行病学和统计学;(3)流行病学系精心挑选的课程,
哈佛大学环境健康和细胞生物学;以及(4)相关会议、研讨会和研讨会。我
我将特别重视在我的所有培训领域建立一个专家合作者网络。
环境:哈佛医学院是全球顶尖研究团队的所在地,这两个孩子
癌症与环境健康。由于哈佛在这些领域的科学发现方面处于领先地位
菲尔兹,其无与伦比的资源,充满活力的知识氛围,以及对协作科学的促进
它整合了跨学科的知识,提供了一个理想的环境,可以在其中进行这些主题的培训。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mobile Source Benzene Regulations and Risk of Childhood and Young Adult Hematologic Cancers in Alaska: A Quasi-experimental Study.
阿拉斯加移动源苯法规与儿童和青年血液癌症的风险:一项准实验研究。
- DOI:10.1097/ede.0000000000001594
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nethery,RachelC;Vega,Sofia;Frazier,ALindsay;Laden,Francine
- 通讯作者:Laden,Francine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel C Nethery其他文献
The effect of air pollution exposure on menstrual cycle health using self-reported data from a mobile health app: a prospective, observational study
使用来自移动健康应用程序的自我报告数据研究空气污染暴露对月经周期健康的影响:一项前瞻性观察研究
- DOI:
10.1016/s2542-5196(25)00080-4 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:21.600
- 作者:
Priyanka N deSouza;Amanda A Shea;Virginia J Vitzthum;Fabio Duarte;Claire Gorman Hanly;Meghan Timmons;Patricia Huguelet;Mary D Sammel;Carlo Ratti;Danielle Braun;Rachel C Nethery - 通讯作者:
Rachel C Nethery
Gender and Ebola in Eastern Democratic Republic of the Congo: Pathways to Protective Behavioral Outcomes During the 2018-2020 Ebola Outbreak
刚果民主共和国东部的性别与埃博拉:2018-2020 年埃博拉疫情期间保护行为成果的途径
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
P. Pham;Manasi Sharma;Kenedy K Bindu;Rachel C Nethery;E. Nilles;P. Vinck - 通讯作者:
P. Vinck
Rachel C Nethery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel C Nethery', 18)}}的其他基金
Causal machine learning methods for studying the effects of environmental exposures on childhood cancer using natural experiments
使用自然实验研究环境暴露对儿童癌症影响的因果机器学习方法
- 批准号:
10333365 - 财政年份:2021
- 资助金额:
$ 13.91万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 13.91万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:














{{item.name}}会员




