Molecular signaling mechanisms controlling Cryptosporidium proliferation and development

控制隐孢子虫增殖和发育的分子信号机制

基本信息

项目摘要

Project Abstract Cryptosporidium is a leading cause of diarrheal disease (cryptosporidiosis) and death among young children living in resource-poor settings. In the US, Cryptosporidium is the major cause of waterborne outbreaks linked to recreational water use. Currently, there is no fully effective drug and no vaccine to treat or prevent cryptosporidiosis. The only available US FDA approved drug, nitazoxanide has no proven efficacy in young children with weak immune status and immunocompromised individuals. Therefore, there is an urgent need to develop new drugs and vaccine to reduce the burden of cryptosporidiosis. Progress in anti-cryptosporidial drug and vaccine development has been hampered due to our limited understanding of parasite biology. The underlying reasons for this slow progress have been the unavailability of a robust method to continuously propagate Cryptosporidium, and the absence of molecular genetics to manipulate the parasite genome. We have overcome these hurdles by developing a powerful technology to manipulate the Cryptosporidium genome and propagate these genetically modified parasites in an immunocompromised mouse model system. The key advantage of this genetic system is that the entire life cycle of Cryptosporidium (both asexual and sexual stages) is completed in the mouse intestine, allowing us to unravel parasite biology (Vinayak et al 2015, Nature 523:477). We lack an understanding of the molecular signaling mechanisms that control development of parasite stages for successful completion of the complex life cycle. Signaling pathway components such as the plant-like calcium-dependent protein kinases (CDPKs) have emerged as attractive drug targets in Cryptosporidium and related parasites, due to the absence of their homologues in human host. Taking advantage of our genetic system, we have demonstrated the efficacy of selective bumped kinase inhibitors against calcium-dependent protein kinase-1 (CDPK1), thus indicating a critical role of this signaling kinase in C. parvum. Utilizing the conditional protein degradation system recently developed in our laboratory, we have demonstrated the essential role of CDPK1 in asexual proliferation and parasite survival. Moreover, we have compelling preliminary evidence that sheds light on the role of two signaling kinases in sexual developmental stages. The goal of this project is to elucidate the mechanistic role of these signaling proteins in regulating development of asexual and sexual stages in C. parvum required for parasite proliferation and transmission. Elucidation of these mechanisms will provide novel insights into the fundamental biology of Cryptosporidium, and open new avenues for development of effective therapies.
项目摘要 隐孢子虫病是导致小儿隐孢子虫病和死亡的主要原因 生活在资源贫乏的环境中。在美国,隐孢子虫是水传播疾病爆发的主要原因, 娱乐用水。目前,没有完全有效的药物,也没有疫苗来治疗或预防 隐孢子虫病唯一可用的美国FDA批准的药物,硝唑尼特没有证明在年轻的疗效 免疫力低下的儿童和免疫力低下的个体。因此,迫切需要 开发新的药物和疫苗,以减轻隐孢子虫病的负担。抗隐孢子虫药物研究进展 由于我们对寄生虫生物学的了解有限,疫苗的开发也受到了阻碍。的 这种缓慢进展的根本原因是没有一种可靠的方法来连续 传播隐孢子虫,以及缺乏分子遗传学来操纵寄生虫基因组。我们有 通过开发一种强大的技术来操纵隐孢子虫基因组, 在免疫受损小鼠模型系统中繁殖这些遗传修饰的寄生虫。关键 这种遗传系统的优点是隐孢子虫的整个生命周期(无性和有性阶段) 在小鼠肠道中完成,使我们能够解开寄生虫生物学(Vinayak等人2015,Nature 523:477)。 我们缺乏对控制寄生虫阶段发展的分子信号机制的理解 成功完成复杂的生命周期。信号传导途径的组成部分,如植物样 钙依赖性蛋白激酶(CDPKs)已经成为隐孢子虫中有吸引力的药物靶点, 相关的寄生虫,因为在人类宿主中没有它们的同源物。利用我们的基因 系统,我们已经证明了选择性碰撞激酶抑制剂对钙依赖性 蛋白激酶-1(CDPK 1),从而表明该信号激酶在C.小的利用 条件蛋白质降解系统最近在我们的实验室开发,我们已经证明了必要的 CDPK 1在无性增殖和寄生虫存活中的作用。此外,我们有令人信服的初步证据 这揭示了两种信号激酶在性发育阶段的作用。这个项目的目标是 为了阐明这些信号蛋白在调节无性和有性生殖发育中的机制作用, 阶段C.寄生虫增殖和传播所需的微小体。阐明这些机制将 为隐孢子虫的基础生物学提供新的见解,并开辟新的发展途径 有效的治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sumiti Vinayak Alam其他文献

Sumiti Vinayak Alam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sumiti Vinayak Alam', 18)}}的其他基金

Molecular signaling mechanisms controlling Cryptosporidium proliferation and development
控制隐孢子虫增殖和发育的分子信号机制
  • 批准号:
    10211042
  • 财政年份:
    2021
  • 资助金额:
    $ 38.45万
  • 项目类别:

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了