Integration of the thalamic and cortical inputs in the auditory striatum
听觉纹状体中丘脑和皮质输入的整合
基本信息
- 批准号:10547807
- 负责人:
- 金额:$ 39.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-10 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAnimalsAuditoryAuditory areaAxonBehaviorBehavioralBrainBrain DiseasesBrain regionCellsCorpus striatum structureDecision MakingDestinationsDevelopmentDiscriminationDorsalElectrophysiology (science)FrequenciesGoalsHuntington DiseaseIndividualInstructionInterneuronsLaboratoriesLearningLifeMonitorMusNeuronsParkinson DiseasePathway interactionsPatternPhysiologicalPlayProcessRewardsRodentRoleRouteSensoryShapesSliceStimulusSynapsesSynaptic plasticityTestingThalamic structureWorkauditory stimulusauditory thalamusawakecholinergicexperimental studyflexibilityimprovedin vivoinsightnervous system disorderoptogeneticspharmacologicresponsesoundtherapy development
项目摘要
Animals facing a decision routinely use sensory including auditory information from the outside world to
guide optimal behavior. For example, we listen for instructions from the GPS when trying to take the best
route to a destination. The dorsal striatum is a critical brain region in this sensory-guided decision-making
process. The long-term goal of my laboratory is to understand the circuitry and mechanisms through which
the dorsal striatum transforms auditory stimuli into appropriate actions. Anatomical studies have shown that
individual neurons in the dorsal striatum receive convergent inputs from both the thalamus and the cortex.
Previous studies in associative striatum (rostral dorsal striatum) suggest that these two input pathways play
distinct roles in behaviors. Our studies in sensory striatum (caudal dorsal striatum) indicate that projections
from both the auditory thalamus and the auditory cortex are required for decision-making in rodents
performing an auditory frequency-discrimination task. The primary objective of this proposal is to determine
how the auditory striatum integrates these thalamic and cortical inputs, and how this integration
contributes to auditory frequency-discrimination decision-making and learning. The studies proposed
address the fundamental hypothesis that both thalamic and cortical inputs contribute to auditory decision-
making by differentially modulating striatal sound representations, and by shaping striatal synaptic plasticity
during task learning.
In Aim 1, we will determine how striatal sound representation is regulated by the thalamic and cortical
inputs. We will use in vivo tetrode recording on awake mice to examine the responses of striatal neurons to
pure tones while thalamic or cortical inputs are selectively silenced during stimulus presentation. In Aim 2, we
will examine how striatal neurons integrate the thalamic and cortical inputs using whole-cell patch recording
in brain slice combined with opto-genetic and pharmacological applications. In Aim 3, we will examine the
development of thalamostriatal plasticity during task learning and test how thalamic input influences the
learning-induced corticostriatal plasticity, using in vivo tetrode recording on behaving mice.
The proposed experiments will determine how thalamostriatal and corticostriatal pathways regulate
auditory striatal activity and plasticity, the physiological mechanisms underlying their functions in auditory
decision-making. We focus on the auditory striatum in this study, but the findings may be generalized to the
whole sensory striatum. These results will also contribute to the understanding of brain disorders like
Parkinson’s and Huntington’s disease that involve differential changes of activity and plasticity at
thalamostriatal and corticostriatal synapses.
面临决定的动物通常使用包括来自外部世界的听觉信息在内的感觉信息来
引导最优行为。例如,当我们试图获取最好的信息时,我们会听从GPS的指示
到达目的地的路线。在这种感觉引导的决策中,背侧纹状体是一个关键的大脑区域。
进程。我的实验室的长期目标是了解通过
背侧纹状体将听觉刺激转化为适当的动作。解剖学研究表明,
背侧纹状体中的单个神经元接受来自丘脑和皮质的汇聚输入。
先前对联合纹状体(嘴背侧纹状体)的研究表明,这两条输入通路起作用。
在行为中扮演不同的角色。我们对感觉纹状体(尾侧背侧纹状体)的研究表明,投射
在啮齿动物的决策过程中,听觉丘脑和听觉皮质都是必需的。
执行听觉频率辨别任务。这项提案的主要目标是确定
听觉纹状体如何整合这些丘脑和皮质的输入,以及这种整合如何
有助于听觉频率辨别决策和学习。这项研究建议
解决丘脑和大脑皮层输入都有助于听觉决策的基本假设-
通过差异调制纹状体声音表征和塑造纹状体突触可塑性
在任务学习过程中。
在目标1中,我们将确定丘脑和大脑皮层如何调节纹状体声音的表达。
投入。我们将使用清醒小鼠的活体四极管记录来检测纹状体神经元对
纯音,而丘脑或大脑皮层的输入在刺激呈现时被选择性地静音。在目标2中,我们
将使用全细胞贴片记录研究纹状体神经元如何整合丘脑和皮质的输入
在脑片上结合光遗传学和药理学的应用。在目标3中,我们将研究
任务学习中丘脑纹状体可塑性的发展以及丘脑输入如何影响任务学习
学习诱导的皮质纹状体可塑性,使用行为小鼠的活体四极管记录。
拟议中的实验将确定丘脑纹状体和皮质纹状体通路如何调节
听觉纹状体活动和可塑性及其在听觉功能中的生理机制
决策。在这项研究中,我们将重点放在听觉纹状体上,但这些发现可能被推广到
整个感觉纹状体。这些结果也将有助于理解大脑紊乱,如
帕金森氏病和亨廷顿氏病,涉及活动和可塑性的不同变化
丘脑纹状体和皮质纹状体突触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
QIAOJIE XIONG其他文献
QIAOJIE XIONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('QIAOJIE XIONG', 18)}}的其他基金
The Role of Striatal Neurovascular Coupling in Learning
纹状体神经血管耦合在学习中的作用
- 批准号:
10732867 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Integration of the thalamic and cortical inputs in the auditory striatum
听觉纹状体中丘脑和皮质输入的整合
- 批准号:
10745443 - 财政年份:2019
- 资助金额:
$ 39.88万 - 项目类别:
Integration of the thalamic and cortical inputs in the auditory striatum
听觉纹状体中丘脑和皮质输入的整合
- 批准号:
10331764 - 财政年份:2019
- 资助金额:
$ 39.88万 - 项目类别:
Integration of the thalamic and cortical inputs in the auditory striatum
听觉纹状体中丘脑和皮质输入的整合
- 批准号:
10093002 - 财政年份:2019
- 资助金额:
$ 39.88万 - 项目类别:
Integration of the thalamic and cortical inputs in the auditory striatum
听觉纹状体中丘脑和皮质输入的整合
- 批准号:
10285092 - 财政年份:2019
- 资助金额:
$ 39.88万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Studentship














{{item.name}}会员




