Control of protein degradation and transcriptional dynamics in the auxin response
生长素反应中蛋白质降解和转录动力学的控制
基本信息
- 批准号:10549582
- 负责人:
- 金额:$ 37.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-10 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AuxinsBiochemicalBiologyCellsComplexDevelopmentEngineeringEukaryotaExcisionFutureGenetic TranscriptionGenomeHeartKineticsLinkLogicMalignant NeoplasmsMapsMediatingMediatorModelingMolecularMolecular MedicineMorphogenesisOrganogenesisOutcomePathway interactionsPlantsPropertyProteinsRNA Polymerase IIReaction TimeRepressionResearch Project GrantsResolutionStructureSystemTestingTherapeuticTranscription InitiationTranscription RepressorTranscriptional ActivationTranscriptional RegulationTransgenic PlantsTranslatingUbiquitinVariantWorkYeastscell behaviorchromatin modificationdesigngene repressiongenetic corepressorhuman diseasein vivoinsightnovelprotein complexprotein degradationresponsesmall moleculespatiotemporal
项目摘要
Coordinating the timing of responses both within and between cells is critical for multicellular behaviors like
development. One way to evolve (or engineer) a molecular pacer is via induced turnover of transcriptional
repressors acting at multiple loci—a solution observed in diverse eukaryotes. Yet we know remarkably little
about how protein degradation kinetics translate into downstream transcriptional responses that lead to
outcomes like changes in cell fate. One possible reason is the lack of available models for high-resolution
structure-function analysis of degradation-linked transcriptional activation. We have leveraged the auxin
response, at the heart of nearly every aspect of plant biology, as a model to investigate general principles
underlying ubiquitin-mediated degradation and its connection to transcriptional activation and morphogenesis.
The small-molecule triggered degradation in the auxin pathway offers a unique advantage for these studies,
and has facilitated our engineering of auxin-induced degradation and transcriptional activation in yeast. Our
extensive work with our ‘AuxInYeast’ system has led to a central hypothesis: the auxin system functions as a
developmental timer in plants, and similar logic circuits act in many eukaryotes. One recent insight into the
molecular mechanism underlying the auxin timer was our discovery that transcriptional repression in the auxin
circuit, conferred by a Groucho/Tup1/TLE-type corepressor called TPL, requires interaction with the Mediator
complex. Our results suggest a new model of transcriptional regulation where corepressors can stabilize the
Pre-Initiation Complex in the absence of RNA Polymerase II, priming loci for rapid activation. In addition, we
have shown in transgenic plants that the rate of degradation-triggered removal of the TPL corepressor sets the
pace of de novo organogenesis in the root. Here, we will rigorously test the emergent model that corepressor-
based priming facilitates coordination of rapid transcriptional bursts at multiple loci across the genome, and
facilitates cell-cell synchrony during morphogenesis. Specific research projects will: (1) Deliver a high
spatiotemporal resolution, integrated, functional map of a single synthetic yeast locus transitioning from
repressed to active state, including composition/placement of protein complexes and chromatin modifications;
(2) Dissect the mechanism of a novel autonomous TPL repression domain we have identified that is found in
thousands of proteins, and quantify the impacts on repressive function of cancer-associated variants in select
proteins; (3) Build an in vivo cell fate tracker to probe the connection between synchrony in transcription and
morphogenesis. Together, the proposed work will provide a mechanistic framework for degradation-initiated
transcriptional activation in the auxin response, and potentially provide insights into fundamental properties in
common with many corepressor-primed systems. These insights can inform our understanding of degradation-
and transcription-associated human disease, as well as guiding future design of synthetic circuits using auxin
components for therapeutic applications.
协调细胞内和细胞之间的反应时间对于多细胞行为至关重要,如
发展。进化(或设计)分子步行者的一种方式是通过诱导转录的翻转
作用于多个位点的抑制物--在不同的真核生物中观察到的一种溶液。然而,我们对此知之甚少
关于蛋白质降解动力学如何转化为下游转录反应从而导致
结果就像细胞命运的变化。一个可能的原因是缺乏可用于高分辨率的模型
降解相关转录激活的结构-功能分析。我们已经利用了生长素
反应,几乎是植物生物学各个方面的核心,作为研究一般原理的模型
泛素介导的降解及其与转录激活和形态发生的关系。
生长素途径中的小分子引发的降解为这些研究提供了独特的优势,
并促进了生长素在酵母中诱导降解和转录激活的工程实现。我们的
对我们的‘AuxInYEast’系统的广泛研究导致了一个中心假说:生长素系统的功能是
植物中的发育计时器,以及许多真核生物中类似的逻辑电路。一项最新洞察
生长素计时器背后的分子机制是我们发现生长素的转录抑制
由称为TPL的Groucho/Tup1/TLE类型的辅抑制子授予的电路需要与调解器交互
很复杂。我们的结果提示了一种新的转录调控模式,在这种模式下,辅抑制子可以稳定
预引发复合体在没有RNA聚合酶II的情况下,启动基因座进行快速激活。此外,我们
已经在转基因植物中表明,由降解引发的TPL辅阻遏子的移除速度设置了
根中新器官发生的速度。在这里,我们将严格测试核心抑制器-
基于启动的有助于协调基因组上多个基因座的快速转录爆发,以及
在形态发生过程中促进细胞间的同步化。具体的研究项目将:(1)提供高
单个合成酵母基因座的时空分辨率、集成功能图
抑制到活性状态,包括蛋白质复合体的组成/放置和染色质修饰;
(2)剖析了我们发现的一个新的自主TPL抑制结构域的机制。
数以千计的蛋白质,并量化选择的癌症相关变体对抑制功能的影响
蛋白质;(3)建立体内细胞命运追踪器,以探索转录同步性与
形态发生。总之,拟议的工作将为退化启动提供一个机制框架
在生长素反应中的转录激活,并潜在地为深入了解
在许多辅酶阻滞剂启动的系统中常见。这些洞察力可以帮助我们理解退化--
和转录相关的人类疾病,以及指导未来使用生长素的合成电路设计
用于治疗应用的组件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER L NEMHAUSER其他文献
JENNIFER L NEMHAUSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER L NEMHAUSER', 18)}}的其他基金
Control of protein degradation dynamics in the auxin response
生长素反应中蛋白质降解动力学的控制
- 批准号:
9015773 - 财政年份:2014
- 资助金额:
$ 37.42万 - 项目类别:
Control of protein degradation and transcriptional dynamics in the auxin response
生长素反应中蛋白质降解和转录动力学的控制
- 批准号:
10356847 - 财政年份:2014
- 资助金额:
$ 37.42万 - 项目类别:
Control of protein degradation and transcriptional dynamics in the auxin response
生长素反应中蛋白质降解和转录动力学的控制
- 批准号:
10115746 - 财政年份:2014
- 资助金额:
$ 37.42万 - 项目类别:
Control of protein degradation and transcriptional dynamics in the auxin response
生长素反应中蛋白质降解和转录动力学的控制
- 批准号:
9896837 - 财政年份:2014
- 资助金额:
$ 37.42万 - 项目类别:
Control of protein degradation dynamics in the auxin response
生长素反应中蛋白质降解动力学的控制
- 批准号:
8695018 - 财政年份:2014
- 资助金额:
$ 37.42万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 37.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
$ 37.42万 - 项目类别:
Developing synthetic chemical biology strategies for biochemical investigations and biomedical applications
开发用于生化研究和生物医学应用的合成化学生物学策略
- 批准号:
10623497 - 财政年份:2023
- 资助金额:
$ 37.42万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2022: Defining the biochemical mechanisms of microtubule shrinking and nucleation by combining innovative experiments and simulations
2022 财年 NSF 生物学博士后奖学金:通过结合创新实验和模拟来定义微管收缩和成核的生化机制
- 批准号:
2209298 - 财政年份:2022
- 资助金额:
$ 37.42万 - 项目类别:
Fellowship Award
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10665058 - 财政年份:2021
- 资助金额:
$ 37.42万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1 - Multi-Mode Detection and Imaging of Biomolecular Condensates.
描述 EWSR1 生物学的综合生化和结构方法 - 生物分子凝聚物的多模式检测和成像。
- 批准号:
10797858 - 财政年份:2021
- 资助金额:
$ 37.42万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10298663 - 财政年份:2021
- 资助金额:
$ 37.42万 - 项目类别:
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2019
- 资助金额:
$ 37.42万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2018
- 资助金额:
$ 37.42万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2017
- 资助金额:
$ 37.42万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




