Discovery of New Antibacterial Targets: Probes and Inhibitors of Histidine Kinase Proteins
新抗菌靶点的发现:组氨酸激酶蛋白的探针和抑制剂
基本信息
- 批准号:10549865
- 负责人:
- 金额:$ 30.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Adenosine TriphosphateAdjuvantAffectAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBehavior ControlCellsCessation of lifeChemicalsCommunicable DiseasesComplementComplexCuesDevelopmentEnvironmentEventFutureGene Expression RegulationGenerationsGoalsGrowthHistidineInfectionInvestigationKnowledgeLanguageMapsMediatingMetalsMethodsMicrobeMolecularNutrientOrganismOutcomePathogenesisPathogenicityPathway interactionsPhenotypeProcessPropertyProteinsPseudomonas aeruginosaRegulationRepressionResearchRoleSeminalSignal TransductionSignal Transduction PathwayStimulusSystemTechniquesTherapeuticTimeTranslationsVirulenceWorkantibiotic resistant infectionsassaultbehavioral phenotypingbenzothiazoleburn wounddeprivationdesignenvironmental stressorinfectious disease treatmentinhibitorinnovationkinase inhibitormicroorganismnovelnovel strategiesphosphohistidineprotein-histidine kinaseresistance mechanismresponsescaffoldtooltransmission process
项目摘要
Bacteria rely on signal transduction pathways to respond to environmental cues. Their ability to specifically
and sensitively detect the presence or absence of a single chemical entity amongst the background of
thousands of other molecules is essential for their survival. Two-component systems (TCSs; generally 20-120
discrete systems per organism) are crucial for the translation of this complex molecular environment into
bacterial action, ranging from growth to antibiotic resistance to virulence. Despite the central role of TCSs to an
organism’s adaptive response, technical challenges have hampered their study, limiting our understanding of
how the combined transmission of the signals from many TCSs are coordinated by the cell to orchestrate
survival and pathogenesis.
A small number of TCSs have been identified as important targets for the development of antibacterial
agents. However, it is clear that the complex process of bacterial signaling holds many additional targets that
will be critical for combating the rapidly approaching “post-antibiotic era.” The goal of the proposed research is
to develop and apply the tools and techniques required to study the regulation of the histidine kinases, the key
proteins required for TCS-mediated bacterial signaling. Histidine kinases directly sense external stimuli and
transmit this chemical message inside of the cell, promoting the regulation of gene expression. Ultimately, the
tools and knowledge amassed in this work will enable us to understand and predict how a signal is propagated
into bacterial action and to hijack the TCSs for the treatment of infectious disease. These goals will be
accomplished by pursuit of three Aims. Aim 1. Develop ATP-based molecules as activity-based probes for
assessment of histidine kinase activation. Aim 2. Globally map histidine kinase activation from environmental
stressors, antibiotic exposure, and host interactions to identify the key HKs required for rapid bacterial
adaptation and survival. Aim 3. Utilize multi-histidine kinase inhibitors to determine the proteins that are major
contributors to pathogenicity and virulence phenotypes.
It is clear that there is a dire need for new approaches to the treatment of antibiotic-resistant infections –
the antibiotic pipeline has focused on the “death phenotype,” which has led to the rapid rise of antibiotic
resistance and a severe lack of molecules that function through novel mechanisms-of-action. Control of
behavioral phenotypes, especially pathogenesis and virulence, is an exceptionally promising but unrealized
approach for the control of infectious disease. Our highly interdisciplinary and innovative approach will enable
us to assemble a critical understanding of TCS-mediated signal transduction, with particular emphasis on
characterization of the HKs required in pathogenesis- and virulence-associated processes.
细菌依靠信号转导途径对环境信号做出反应。他们有能力具体地
并灵敏地检测背景中单个化学实体的存在或不存在
数以千计的其他分子对它们的生存至关重要。双组分系统(TCS;通常为20-120
每个有机体的离散系统)对于将这种复杂的分子环境转化为
细菌的作用,从生长到抗生素耐药性再到毒性。尽管TCSs对
生物体的适应性反应,技术挑战阻碍了它们的研究,限制了我们对
小区如何协调来自多个TC的信号的组合传输以协调
生存和发病机制。
少数TCS已被确定为开发抗菌药物的重要靶点
探员们。然而,很明显,细菌信号的复杂过程包含许多额外的靶点
将是与迅速到来的“后抗生素时代”作斗争的关键。拟议研究的目标是
开发和应用研究组氨酸激酶调节所需的工具和技术,关键是
TCS介导的细菌信号转导所需的蛋白质。组氨酸激酶直接感知外部刺激和
在细胞内传递这种化学信息,促进基因表达的调节。归根结底,
在这项工作中积累的工具和知识将使我们能够理解和预测信号是如何传播的
转化为细菌活动,并劫持TCSs用于治疗传染病。这些目标将是
通过追求三个目标来实现。目标1.开发基于ATP的分子作为基于活性的探针
组氨酸激酶活性的评估。目的2.从环境中全球定位组氨酸激酶的激活
应激源、抗生素暴露和宿主相互作用,以确定快速细菌所需的关键HKS
适应和生存。目的3.利用多组氨酸激酶抑制剂来确定主要的蛋白质
致病性和毒力表型的贡献者。
显然,迫切需要新的方法来治疗抗生素耐药感染-
抗生素流水线将重点放在“死亡表型”上,这导致了抗生素的迅速崛起
抗药性和严重缺乏通过新的作用机制发挥作用的分子。控制
行为表型,尤其是致病机理和致病力,是一个非常有希望但尚未实现的研究方向。
控制传染病的方法。我们高度跨学科和创新的方法将使
美国将汇集对TCS介导的信号转导的批判性理解,并特别强调
致病和毒力相关过程中所需的HKS的特征。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2-Aminobenzothiazoles Inhibit Virulence Gene Expression and Block Polymyxin Resistance in Salmonella enterica.
- DOI:10.1002/cbic.202000422
- 发表时间:2020-12-11
- 期刊:
- 影响因子:0
- 作者:Thielen MK;Vaneerd CK;Goswami M;Carlson EE;May JF
- 通讯作者:May JF
Targeting a highly conserved domain in bacterial histidine kinases to generate inhibitors with broad spectrum activity.
- DOI:10.1016/j.mib.2021.03.007
- 发表时间:2021-06
- 期刊:
- 影响因子:5.4
- 作者:Fihn CA;Carlson EE
- 通讯作者:Carlson EE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Elizabeth Carlson其他文献
Erin Elizabeth Carlson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin Elizabeth Carlson', 18)}}的其他基金
Chemical Methods to Characterize Penicillin-Binding Protein Function and Interactions
表征青霉素结合蛋白功能和相互作用的化学方法
- 批准号:
10645143 - 财政年份:2020
- 资助金额:
$ 30.36万 - 项目类别:
Chemical Methods to Characterize Penicillin-Binding Protein Function and Interactions
表征青霉素结合蛋白功能和相互作用的化学方法
- 批准号:
10254419 - 财政年份:2020
- 资助金额:
$ 30.36万 - 项目类别:
Chemical Methods to Characterize Penicillin-Binding Protein Function and Interactions
表征青霉素结合蛋白功能和相互作用的化学方法
- 批准号:
10797187 - 财政年份:2020
- 资助金额:
$ 30.36万 - 项目类别:
Chemical Methods to Characterize Penicillin-Binding Protein Function and Interactions
表征青霉素结合蛋白功能和相互作用的化学方法
- 批准号:
10442760 - 财政年份:2020
- 资助金额:
$ 30.36万 - 项目类别:
Training the Next Generation of Chemical Biologists
培训下一代化学生物学家
- 批准号:
10623200 - 财政年份:2019
- 资助金额:
$ 30.36万 - 项目类别:
Spaciotemporal Regulation of Specific Penicillin Binding Protein (PBP) Function Determined by New Activity-Based Approaches
通过基于活性的新方法确定特定青霉素结合蛋白 (PBP) 功能的时空调节
- 批准号:
9767233 - 财政年份:2018
- 资助金额:
$ 30.36万 - 项目类别:
Targeted natural product diversification to identify novel antibacterial agents
有针对性的天然产品多样化以确定新型抗菌剂
- 批准号:
8955586 - 财政年份:2011
- 资助金额:
$ 30.36万 - 项目类别:
Targeted natural product diversification to identify novel antibacterial agents
有针对性的天然产品多样化以确定新型抗菌剂
- 批准号:
8146429 - 财政年份:2011
- 资助金额:
$ 30.36万 - 项目类别:
Innovative Technologies for Metabolite Profiling and Natural Products Discovery
代谢物分析和天然产物发现的创新技术
- 批准号:
7635369 - 财政年份:2007
- 资助金额:
$ 30.36万 - 项目类别:
Innovative Technologies for Metabolite Profiling and Natural Products Discovery
代谢物分析和天然产物发现的创新技术
- 批准号:
7356582 - 财政年份:2007
- 资助金额:
$ 30.36万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
Studentship
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:














{{item.name}}会员




