AI-Based Identification of Rapid Glaucoma Progression to Guide Clinical Management and Accelerate Clinical Trials
基于人工智能的青光眼快速进展识别,指导临床管理并加速临床试验
基本信息
- 批准号:10553060
- 负责人:
- 金额:$ 23.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAreaArtificial IntelligenceBlindnessCaringClinicClinicalClinical DataClinical ManagementClinical ResearchClinical TrialsConsumptionDataData SetDegenerative DisorderDetectionDevelopmentDiseaseDisease ProgressionEarly InterventionEarly identificationEngineeringEvaluationExpert SystemsEyeFundusGlaucomaGoalsHealth Care CostsHealthcare SystemsImageLeadLengthLettersLongitudinal cohortMeasurementMeasuresMedicalMethodsModelingOperative Surgical ProceduresOphthalmologyOptical Coherence TomographyParticipantPatient CarePatientsPerformancePersonsPharmacologic SubstancePhaseQuality of lifeRecording of previous eventsRecordsResearchSample SizeSampling StudiesSeverity of illnessSmall Business Technology Transfer ResearchSpecialistSpeedStructureSystemTechniquesTestingTherapeuticTimeTrainingVisionVisitVisual FieldsWorkbasecare costsclinical careclinical decision supportcohortcommercial applicationcostdashboarddeep learningdeep learning modeldemographicsdesigndrug developmenteffective interventionfield studyfollow-upimprovedimproved outcomelongitudinal datasetmultimodalitymultiple data typesneuroprotectionnovelnovel therapeuticspredictive modelingpredictive toolsprimary outcomerecruitresearch studysexsupport toolstooltreatment response
项目摘要
Project Summary
Glaucoma is the leading cause of irreversible blindness worldwide and is expected to affect more than 110 million
people worldwide within the next two decades. It is a degenerative disease that has a large impact both in terms
of patient quality of life and in costs to the healthcare system. A critical need in glaucoma clinical management
and research is the ability to accurately identify patients likely to undergo rapid disease progression (i.e., lose
visual function quickly). Currently, estimating the rate of progression for a patient requires several follow-up visits
over the course of multiple years. This delay in identifying progression leads to lost vision and increases the cost
of care. It also impacts clinical trials in glaucoma, increasing the time and cost needed to investigate novel
therapies for the disease. The goal of this Phase I STTR proposal is to use artificial intelligence techniques to
improve the accuracy and shorten the time for identifying raid progression in glaucoma. The primary outcome of
our Phase I proposal will enable an AI-based tool to identify rapid glaucomatous progression and will be
immediately ready for use in Phase 1/2a clinical trials as FDA approval is not required. Specifically, we will (1)
use longitudinal optical coherence tomography (OCT) imaging and visual field (VF) testing dataset to train AI
models to identify rapidly progressing glaucoma patients and (2) incorporate patient data, clinical measurements,
and treatment history into the AI models to further improve performance. AI models will be trained and evaluated
on a combination of research and real-world clinical data. These datasets include tens of thousands of images,
VF tests, and clinical records collected from a diverse cohort of more than 9,000 glaucoma patients over the
course of more than a decade. These datasets provide us with a unique opportunity to not only train AI models,
but also to characterize model performance as a function of patient demographics, clinical covariates, disease
severity, and follow-up length – providing critical context to help clinicians better understand model predictions.
Accurate and early predictions would be of great benefit to both clinical management and clinical trials in
glaucoma. Improved outcomes, reduced patient care and drug development costs, and faster development of
glaucoma therapeutics make tools that quickly identify progressors an attractive product for our target customers,
pharmaceutical companies and eye care specialists.
项目摘要
青光眼是全球不可逆失明的主要原因,预计影响超过1.1亿人
未来二十年内,全世界的人们。这是一种退行性疾病,对人类的
患者的生活质量和医疗保健系统的成本。青光眼临床管理的迫切需要
并且研究是准确识别可能经历快速疾病进展的患者的能力(即,失去
视觉功能快速)。目前,估计患者的进展速度需要多次随访
在几年的时间里。这种识别进展的延迟导致视力丧失并增加成本
护理。它还影响了青光眼的临床试验,增加了研究新药物所需的时间和成本。
该疾病的治疗方法。第一阶段STTR提案的目标是使用人工智能技术,
提高了青光眼raid进展的准确性,缩短了识别时间。的主要结局
我们的第一阶段提案将使基于人工智能的工具能够识别快速的昏迷进展,
立即准备用于1/2a期临床试验,因为不需要FDA批准。具体来说,我们将(1)
使用纵向光学相干断层扫描(OCT)成像和视野(VF)测试数据集来训练AI
识别快速进展的青光眼患者的模型和(2)结合患者数据,临床测量,
和治疗历史输入到AI模型中,以进一步提高性能。AI模型将被训练和评估
结合研究和实际临床数据。这些数据集包括数万张图像,
VF测试和临床记录收集了超过9,000名青光眼患者的不同队列,
十多年的历程。这些数据集为我们提供了一个独特的机会,不仅可以训练AI模型,
而且还将模型性能表征为患者人口统计学、临床协变量、疾病
严重程度和随访时间-提供关键背景,帮助临床医生更好地理解模型预测。
准确和早期的预测将对临床管理和临床试验都有很大好处,
青光眼改善结果,降低患者护理和药物开发成本,加快药物开发
青光眼治疗使快速识别进展者的工具成为对我们目标客户有吸引力的产品,
制药公司和眼部护理专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Tafreshi其他文献
Ali Tafreshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 23.98万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 23.98万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 23.98万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 23.98万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 23.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 23.98万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 23.98万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 23.98万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 23.98万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 23.98万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




