The Proactive Screening and diagnosis of mild cognitive impairment and depression in patients aged 65 and over: An Implementation Study
65 岁及以上患者轻度认知障碍和抑郁症的主动筛查和诊断:实施研究
基本信息
- 批准号:10551816
- 负责人:
- 金额:$ 149.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlzheimer&aposs disease related dementiaBiological MarkersBrainBrain DiseasesCaringClassificationClinicClinical ResearchCognitiveCommunitiesComplexDataData SetDementiaDetectionDevicesDiagnosisDiagnosticDigital Signal ProcessingDimensionsDiseaseDropoutEconomic BurdenEnvironmentEtiologyHealthHealth Care CostsHealthcareHomeInternationalInterventionInterviewLabelLeadMeasurementMental DepressionMetadataMethodsModelingParticipantPatient Self-ReportPatient-Focused OutcomesPatientsPerformancePopulationPrimary Health CareProcess AssessmentProspective StudiesQuality of lifeResearchResearch Domain CriteriaRiskSample SizeSamplingSelf AdministrationSmall Business Innovation Research GrantSpeedStandardizationTelephone InterviewsTrainingWorkamnestic mild cognitive impairmentbasecognitive interviewcognitive testingcomorbid depressioncomorbiditycostdata analysis pipelinedepressive symptomsdiagnostic platformdiagnostic tooldiagnostic valuedigitalgenetic risk factorgeriatric depressionhealth economicshuman old age (65+)implementation studyimprovedmHealthmachine learning algorithmmachine learning modelmeetingsmild cognitive impairmentneuropsychiatrynovelprogramsrecruitremote assessmentscreeningsmartphone based assessmenttoolusability
项目摘要
Project Summary
The proposed program aims to complete the work needed for Miro Health to finalize FDA
approval for the automated diagnosis of amnestic MCI (aMCI) which often leads to Alzheimer’s
and related dementias (ADRD), non-amnestic MCI (naMCI), and late life depression (LLD). The
work involves the optimization of our data processing pipeline and digital signal processing
methods and the refinement of our machine learning algorithms based on data types collected
via real-world settings rather than through clinical research environments. Our objective is to
improve patient outcomes and reduce healthcare costs by providing a universally available, self-
administered mobile brain assessment and diagnostic platform.
Prospective study participants will be recruited from clinics and the community. Participants will
participate in novel mobile assessments and traditional cognitive and psychiatric assessments.
The resulting data will be used to: (1) Assess usability of Miro for remote assessment; (2)
Improve quantification of functional abilities and add RDoC metadata labels to Platform; (3)
Refine A.I. models for the diagnosis of aMCI, naMCI, LLD, and comorbid MCI+LLD.
Because late-life depression often mimics MCI and co-occurring depression may hasten the
progression of MCI toward dementia, the identification and proper treatment of depression may
resolve some apparent cases of MCI and slow the progression of others. Comorbid presentation
of brain disorders is common and the increased availability of tools that can accurately and
reliably identify complex comorbidities will improve care for our neediest patients.
The work involved in this program will enhance Miro Health’s Mobile Research Platform. The
introduction of RDoC metadata labels into our Mobile Research Platform’s metadata schema
will help standardize clinical research, dramatically reduce the number of staff needed per
study, and support massive scalability. Enhancing tools that yield precise, uniform data sets will
improve the power, interpretability, and generalizability of studies examining disease etiology,
genetic risk factors, and interventions.
项目摘要
拟议的计划旨在完成Miro Health完成FDA所需的工作
批准自动诊断遗忘型MCI(aMCI),这通常会导致阿尔茨海默氏症
和相关痴呆(ADRD)、非遗忘型MCI(naMCI)和晚年抑郁症(LLD)。的
工作涉及我们的数据处理管道和数字信号处理的优化
方法和我们的机器学习算法的基础上收集的数据类型的改进
通过现实世界的设置,而不是通过临床研究环境。我们的目标是
通过提供普遍可用的自助服务,改善患者治疗效果并降低医疗保健成本
管理的移动的大脑评估和诊断平台。
将从诊所和社区招募前瞻性研究参与者。参与者将
参与新型移动的评估和传统的认知和精神评估。
所得数据将用于:(1)评估Miro用于远程评估的可用性;(2)
完善功能能力量化,平台增加RDoC元数据标签;(3)
优化人工智能aMCI、naMCI、LLD和共病MCI+LLD的诊断模型。
因为晚年抑郁症通常与MCI相似,同时发生的抑郁症可能会加速MCI的发生。
MCI向痴呆的发展,抑郁症的识别和适当的治疗可能
解决一些明显的MCI病例,减缓其他病例的进展。共病先露
大脑疾病是常见的,越来越多的工具可以准确地,
可靠地识别复杂的合并症将改善我们最需要的患者的护理。
该计划所涉及的工作将增强米罗健康的移动的研究平台。的
将RDoC元数据标签引入到我们的移动的研究平台的元数据模式中
这将有助于标准化临床研究,大大减少每个项目所需的工作人员数量,
学习,并支持大规模的可扩展性。加强产生精确、统一数据集的工具,
提高疾病病因学研究的效力、可解释性和可推广性,
遗传风险因素和干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shenly Glenn其他文献
Shenly Glenn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shenly Glenn', 18)}}的其他基金
The Proactive Screening and diagnosis of mild cognitive impairment and depression in patients aged 65 and over: An Implementation Study
65 岁及以上患者轻度认知障碍和抑郁症的主动筛查和诊断:实施研究
- 批准号:
10706563 - 财政年份:2022
- 资助金额:
$ 149.14万 - 项目类别: