Physiological Interrogation of Reactive Astrocytes

反应性星形胶质细胞的生理学询问

基本信息

  • 批准号:
    10555444
  • 负责人:
  • 金额:
    $ 14.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-26 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Reactive astrogliosis represents the most common neuropathological finding in brain diseases. Unfortunately, we lack fundamental molecular insight into the consequences of reactive astrogliosis on cell function. Although we presume that astrocytes’ vital physiological roles are dysfunctional in reactive astrogliosis, our community lacks key, fundamental tools that can incisively test hypotheses as to how these cells show dysfunction. This capability gap between transcriptomic analytical workflows and physiological analytical workflows represents a significant barrier for the glial biology community’s capability to understand the consequences of gliosis on astrocyte cell function. Addressing this capability gap through machine learning/artificial intelligence (ML/AI) approaches represents a specific goal delineated by a consensus editorial published in Nature Neuroscience recently by prominent glial biologists. The scientific premise of the proposed research is based on the utilization of live cell imaging of astrocytic intracellular Ca++ transients ([Ca++]i) to capture astrocyte physiological responses to external stimuli. The underlying hypothesis to be tested is that efficient segmentation of video images can occur using convolutional neural networks, and that video image feature extraction that includes pixel intensity, object texture, object shape, and directionality of astrocyte [Ca++]i transients will permit enriched clustering analysis of [Ca++]i transient wave-form types. In our preliminary data, we have already captured over 312 GB of live cell astrocyte Ca++ imaging data upon which to perform the proposed analyses. These videos capture brainstem astrocyte responses to hypoxia in vitro as well as following treatment with the endotoxin lipopolysaccharide (LPS). Thus, we will assess, for the first time, ([Ca++]i from brainstem astrocytes cultured without serum at baseline, hypoxia, and recovery, with and without LPS treatment. The objectives of the proposed research are to perform a secondary analysis of this dataset so as to develop objective analytical workflows that capture a more complete picture of astrocytic phenotypes during physiological challenges. To achieve this we will achieve three aims. We will first develop an efficient, unbiased image segmentation workflow to capture active astrocytes during physiological challenges using the UNET-based CNN algorithm. We will then identify clusters of astrocyte [Ca++]i transients wave-form types under distinct physiological challenges. Lastly, as a future direction that will lay the groundwork for our subsequent R01 application, we will modify our astrocyte imaging workflows to promote compatibility with spatial transcriptomic analysis by integrating photoconvertible reporters and image registration processes using a spatial transcriptomic platform. At the conclusion of the proposed research we will, for the first time, have a rapid, objective image analysis workflow to interrogate astrocyte physiology.
项目摘要 反应性星形胶质细胞增生是脑疾病中最常见的神经病理学发现。不幸的是, 我们对反应性星形胶质细胞增生对细胞功能的影响缺乏基本的分子洞察力。虽然 我们假设星形胶质细胞的重要生理作用在反应性星形胶质细胞增生中功能失调, 缺乏关键的,基本的工具,可以尖锐地测试假设,这些细胞如何显示功能障碍。这 转录组学分析工作流程和生理学分析工作流程之间的能力差距代表了 这是神经胶质生物学社区理解神经胶质增生的后果的能力的一个重大障碍, 星形胶质细胞功能通过机器学习/人工智能(ML/AI)解决这一能力差距 《自然神经科学》上发表的一篇共识社论描绘了一个具体的目标 最近由著名的神经胶质生物学家。建议研究的科学前提是基于利用 星形胶质细胞内Ca++瞬变([Ca++]i)的活细胞成像,以捕获星形胶质细胞的生理反应 外部刺激。要测试的基本假设是,视频图像的有效分割可以 使用卷积神经网络发生,并且包括像素强度的视频图像特征提取, 对象纹理、对象形状和星形胶质细胞[Ca++]i瞬变的方向性将允许富集聚类 [Ca++]i瞬态波形类型分析。在我们的初步数据中,我们已经捕获了超过312 GB的 进行拟定分析的活细胞星形胶质细胞Ca++成像数据。这些视频记录了 脑干星形胶质细胞对体外缺氧以及内毒素处理后的反应 脂多糖(LPS)。因此,我们将首次评估培养的脑干星形胶质细胞的[Ca++]i 基线时无血清,缺氧和恢复,有和无LPS治疗。的目标 建议的研究是对该数据集进行二次分析,以便制定客观的分析方法。 在生理挑战期间捕获星形胶质细胞表型的更完整图片的工作流程。到 要做到这一点,我们将实现三个目标。我们将首先开发一个高效、无偏见的图像分割工作流程 使用基于UNET的CNN算法在生理挑战期间捕获活跃的星形胶质细胞。然后我们将 在不同生理挑战下鉴定星形胶质细胞[Ca++]i瞬变波形类型簇。最后, 作为未来的发展方向,将为我们随后的R 01应用奠定基础,我们将修改我们的 星形胶质细胞成像工作流程,通过整合 使用空间转录组学平台的光可转化报告子和图像配准过程。在 结论所提出的研究,我们将首次有一个快速,客观的图像分析工作流程, 研究星形胶质细胞生理学

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CATHERINE CZEISLER其他文献

CATHERINE CZEISLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CATHERINE CZEISLER', 18)}}的其他基金

Mechanisms of Congenital Hypoventilation
先天性通气不足的机制
  • 批准号:
    9486593
  • 财政年份:
    2017
  • 资助金额:
    $ 14.95万
  • 项目类别:
Mechanisms of Congenital Hypoventilation
先天性通气不足的机制
  • 批准号:
    9918960
  • 财政年份:
    2016
  • 资助金额:
    $ 14.95万
  • 项目类别:
Laminin Signaling and Neural Stem Cell Differentiation
层粘连蛋白信号传导和神经干细胞分化
  • 批准号:
    6946346
  • 财政年份:
    2004
  • 资助金额:
    $ 14.95万
  • 项目类别:
Laminin Signaling and Neural Stem Cell Differentiation
层粘连蛋白信号传导和神经干细胞分化
  • 批准号:
    6825337
  • 财政年份:
    2004
  • 资助金额:
    $ 14.95万
  • 项目类别:
Laminin Signaling and Neural Stem Cell Differentiation
层粘连蛋白信号传导和神经干细胞分化
  • 批准号:
    7119265
  • 财政年份:
    2004
  • 资助金额:
    $ 14.95万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 14.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了