Exploiting Natural Genetic and Organismic Variation to Identify the DNA Motifs Regulating Transcription

利用自然遗传和有机体变异来识别调节转录的 DNA 基序

基本信息

  • 批准号:
    10553783
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-18 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Understanding how non-coding DNA regulates gene expression is critical to addressing myriad problems in biotechnology and human health. This endeavor, however, has proven a major challenge, in part, as the genome appears to encode many highly convoluted regulatory networks. Particularly in vertebrates, regulatory elements such as promoters or enhancers are highly diverse and contain of dozens of DNA motifs spaced by intervening sequences. Traditional sequence analysis strategies that focus on conservation are ineffective to single out the functional motifs as regulatory DNA evolves rapidly and often even relocates. The transcription start site (TSS) is a landmark of gene regulation. Accurate TSS enables to define DNA motifs functionally associated with transcription. TSSs further allow anchoring and comparing the regulatory regions or orthologous genes across evolution, independent of direct sequence conservation. Although distantly related organisms typically lack homologous regulatory DNA, it remains to be explored to what extent specific sequence motifs are selectively conserved to drive expression gene. I therefore developed capped small RNA- seq (csRNA-seq), which accurately maps the TSS of both stable (protein coding and non-coding RNAs) and unstable transcripts (enhancer RNAs, divergent transcripts) to reveal active regulatory elements genome-wide. csRNA-seq only requires total RNA as starting material, thus enabling TSSs profiling in virtually any eukaryotic organism from which RNA can be extracted. Eukarya, from unicellular protists to humans, vary in organismic, genetic and regulatory complexity. I hypothesize that this spectrum in diversity, combined with TSS mapping (csRNA-seq), can be exploited to uncover the key DNA motifs and subsequently TF networks that regulate gene expression across the Eukarya. Analogous to the work of an archeologist at prehistoric sites, mapping TSSs along the tree of life ‘excavates’ ancestral, less convoluted states of gene regulation. These insights should also be instrumental to better interpret the human genome. To explore this central hypothesis, I seek to 1) implement tools for the analysis and visualization of csRNA-seq and facilitate the comparative analysis of annotated regulatory features across species, 2) identify the TF binding sites mediating transcription initiation across Eukarya, 3) trace the evolution and usage of TF binding sites and their spatial organization in regulatory elements of orthologous genes or sets of genes. In preparation, I have generated data for 42 Eukarya spanning over 2 billion years of transcriptome evolution and joined an exceptional bioinformatics group, which also provides a unique an opportunity for training critical for my successful transition to independence. This proposal, if successful, will reveal the major DNA motifs mediating transcription and markedly expand our mechanistic understanding of eukaryotic gene regulation. Furthermore, it will provide a novel method to capture nascent TSSs (csRNA-seq), a free software suite to facilitate analysis, a data portal for easy data access and browsing, and unique dataset to the greater scientific community.
了解非编码DNA如何调节基因表达对于解决生物学中的无数问题至关重要。 生物技术与人类健康。然而,这一奋进已被证明是一个重大挑战,部分原因是, 基因组似乎编码许多高度复杂的调控网络。特别是在脊椎动物中, 元件如启动子或增强子是高度多样的,并且含有数十个DNA基序, 插入序列。传统的序列分析策略侧重于保守性, 挑选出功能基序,因为调控DNA进化迅速,甚至经常重新定位。 转录起始位点(TSS)是基因调控的标志。精确的TSS能够定义DNA基序 功能上与转录有关。TSS进一步允许锚定和比较调节区域 或跨越进化的直向同源基因,独立于直接序列保守。虽然遥远 相关生物通常缺乏同源的调控DNA,这仍有待探索,在何种程度上特异性 序列基序被选择性地保守以驱动表达基因。因此我开发了加帽的小RNA- seq(csRNA-seq),其准确地映射稳定(蛋白质编码和非编码RNA)和 不稳定的转录本(增强子RNA,趋异转录本),以揭示全基因组的活性调控元件。 csRNA-seq仅需要总RNA作为起始材料,因此能够在几乎任何真核生物中进行TSS谱分析。 可以提取RNA的生物体。真核生物,从单细胞原生生物到人类,在有机体方面各不相同, 遗传和调控的复杂性。我假设这个频谱的多样性,结合TSS映射 (csRNA-seq),可以用来揭示关键的DNA基序和随后的TF网络,调节 真核生物的基因表达类似于考古学家在史前遗址的工作, TSS沿着生命之树“挖掘”祖先的、不那么复杂的基因调控状态。这些见解 也应该有助于更好地解释人类基因组。为了探索这个核心假设,我试图 1)实施用于分析和可视化csRNA-seq的工具,并促进比较分析 注释跨物种的调控特征,2)鉴定介导转录起始的TF结合位点 3)追踪TF结合位点的进化和使用及其在调控中的空间组织, 直向同源基因或基因组的元件。为了准备,我已经生成了42个真核生物的数据 跨越20亿年的转录组进化,并加入了一个特殊的生物信息学小组, 也提供了一个独特的培训机会,这对我成功过渡到独立至关重要。 如果这项提议成功,将揭示介导转录的主要DNA基序,并显着扩大我们的研究范围。 对真核生物基因调控机制的理解。此外,它将提供一种新的方法, 捕获新生的TSS(csRNA-seq),一个免费的软件套件,以促进分析,一个数据门户,以方便数据 访问和浏览,以及更大的科学界的独特数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sascha H. Duttke其他文献

Dynamic activity in emcis/em-regulatory elements of leukocytes identifies transcription factor activation and stratifies COVID-19 severity in ICU patients
白细胞 emcis/em 调节元件中的动态活性可确定转录因子激活并对 ICU 患者的 COVID-19 严重程度进行分层
  • DOI:
    10.1016/j.xcrm.2023.100935
  • 发表时间:
    2023-02-21
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Michael Tun Yin Lam;Sascha H. Duttke;Mazen F. Odish;Hiep D. Le;Emily A. Hansen;Celina T. Nguyen;Samantha Trescott;Roy Kim;Shaunak Deota;Max W. Chang;Arjun Patel;Mark Hepokoski;Mona Alotaibi;Mark Rolfsen;Katherine Perofsky;Anna S. Warden;Jennifer Foley;Sydney I. Ramirez;Jennifer M. Dan;Robert K. Abbott;Nicole G. Coufal
  • 通讯作者:
    Nicole G. Coufal
Position-dependent function of human sequence-specific transcription factors
人类序列特异性转录因子的位置依赖性功能
  • DOI:
    10.1038/s41586-024-07662-z
  • 发表时间:
    2024-07-17
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Sascha H. Duttke;Carlos Guzman;Max Chang;Nathaniel P. Delos Santos;Bayley R. McDonald;Jialei Xie;Aaron F. Carlin;Sven Heinz;Christopher Benner
  • 通讯作者:
    Christopher Benner
Efficient small fragment sequencing of human, cow, and bison miRNA, small RNA or csRNA-seq libraries using AVITI
使用 AVITI 对人类、牛和野牛 miRNA、小 RNA 或 csRNA-seq 文库进行高效小片段测序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna L. McDonald;Andrew M. Boddicker;Marina I. Savenkova;Ian M. Brabb;Xiaodong Qi;Daniela D. Moré;Cristina W. Cunha;Junhua Zhao;Sascha H. Duttke
  • 通讯作者:
    Sascha H. Duttke

Sascha H. Duttke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sascha H. Duttke', 18)}}的其他基金

Exploiting Natural Genetic and Organismic Variation to Identify the DNA Motifs Regulating Transcription
利用自然遗传和有机体变异来识别调节转录的 DNA 基序
  • 批准号:
    10580846
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

Natural超对称中的希格斯物理与暗物质研究
  • 批准号:
    11775039
  • 批准年份:
    2017
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
Natural超对称在LHC上的现象学研究
  • 批准号:
    11405015
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leveraging natural and engineered genetic barcodes from single cell RNA sequencing to investigate cellular evolution, clonal expansion, and associations between cellular genotypes and phenotypes
利用单细胞 RNA 测序中的天然和工程遗传条形码来研究细胞进化、克隆扩增以及细胞基因型和表型之间的关联
  • 批准号:
    10679186
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Harmony AI: State of the Art Natural Language Processing for Genetic Engineering
Harmony AI:用于基因工程的最先进的自然语言处理
  • 批准号:
    10698805
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Mechanisms of Action of Natural Genetic Variation
自然遗传变异的作用机制
  • 批准号:
    10587460
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Synthesizing immunoinformatics and genetic epidemiology to identify signatures of natural functional immunity to malaria parasites
综合免疫信息学和遗传流行病学,以确定对疟疾寄生虫的天然功能免疫特征
  • 批准号:
    10642330
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Resilient beekeeping and breeding to safeguard natural genetic resources and pollination services (BeeGuards)
弹性养蜂和育种,​​以保护自然遗传资源和授粉服务 (BeeGuards)
  • 批准号:
    10082100
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
    EU-Funded
Delineation of the natural history of Ollier disease and Muffucci syndrome and investigation of their genetic bases
奥利尔病和穆夫奇综合征自然史的描述及其遗传基础的研究
  • 批准号:
    10611190
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Characterizing genetic signatures of natural selection to understand human diseases
表征自然选择的遗传特征以了解人类疾病
  • 批准号:
    10510415
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Characterizing genetic signatures of natural selection to understand human diseases
表征自然选择的遗传特征以了解人类疾病
  • 批准号:
    10674983
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Genetic Regulation of Natural Killer cell Homeostasis and Function
自然杀伤细胞稳态和功能的遗传调控
  • 批准号:
    RGPIN-2019-06457
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Discovery Grants Program - Individual
The maintenance of polymorphisms in natural populations: genetic and environmental correlates of within-species diversity
自然种群多态性的维持:种内多样性的遗传和环境相关性
  • 批准号:
    RGPIN-2019-04351
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了