Olfactory receptor-based sensors for biomedical applications
用于生物医学应用的基于嗅觉受体的传感器
基本信息
- 批准号:10552435
- 负责人:
- 金额:$ 36.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAnimal BehaviorArchitectureBiological ProcessCell Surface ProteinsCell Surface ReceptorsCell physiologyCellsChemicalsChemotaxisDataDevelopmentEngineeringFamilyG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGPR3 geneGTP-Binding ProteinsGeneticGoalsHealthHumanImmunityIntegral Membrane ProteinInterphase CellKnowledgeLigandsMammalian CellOrphanOutcomePathway interactionsPhenotypePlayProcessReceptor ActivationResearchRoleSignal PathwaySignal TransductionTherapeuticTissuesTrainingWorkcell motilitycombinatorialmachine learning modelmuscle regenerationnext generationnovel therapeuticsolfactory receptoroverexpressionsensorsensor technologyside effectsperm celltherapeutic targettreatment response
项目摘要
Project Summary/Abstract
Olfactory receptors (ORs) are one of the largest family of chemical detecting cell-surface receptors in
humans. ORs are expressed beyond the olfactory tissue, with 55 ORs highly expressed ectopically (exORs) in
18 different tissues, where they drive tissue-specific processes including sperm chemotaxis and muscle
regeneration. The majority of exORs, however, have no known ligands; they are orphans, which limits the ability
to understand their role in human health, including 1) elucidation of exOR downstream pathways in the
endogenous tissue, 2) the identification of exOR endogenous ligands, and ultimately 3) an assessment of exORs
as potential therapeutic targets. During the MIRA renewal period, the goal is to leverage the OR-based sensor
technology to generate large sets of high-quality experimental exOR-ligand data to train machine learning
models to predict ligands for the 36 currently orphaned exORs. Such an algorithm would vastly accelerate exOR
deorphanization, and may prove to be general, enabling the deorphanization of all 302 orphan ORs. The long-
term goal is to use the identified ligands that activate the exORs to tease out their role in human health, including
identifying the endogenous exOR ligands in the tissues in which they are overexpressed, and determining the
downstream processes in which they are involved. This understanding will enable an assessment of exORs as
therapeutic targets, and open the door to new, first-in-class therapeutics.
Olfactory receptors belong to the class of cell surface proteins called G-protein coupled receptors (GPCRs).
Non-sensory GPCRs are involved in a myriad of biological process, from cell migration to immunity, making them
important therapeutic targets. GPCRs signal combinatorially, with ~100s of GPCRs expressed in mammalian
cells signaling via a total of 17 G-protein subtypes—resulting in extensive crosstalk between GPCR signaling
pathways, often with important therapeutic implications. A gap in knowledge exists in understanding the extent
of GPCR signaling pathway crosstalk and its effect on cellular processes and animal behavior. Dissecting GPCR
signaling pathway crosstalk will enable 1) the identification of GPCR signaling pathways leading to
therapeutically desired outcomes, vis a vis pathways leading to side effects, towards the development of more
precise and safer therapeutics, and 2) a more nuanced understanding of GPCR signaling that will be crucial for
the engineering of next-generation therapeutic cells. During the MIRA renewal period the goal is to develop a
chemogenetic toolset to combinatorially activate/deactivate multiple (≥ 3) GPCR signaling pathways while
leaving the rest of the cell intact in order to fully dissect the effects of GPCR signaling crosstalk and its biomedical
implications. The long-term goal is to ultimately enable combinatorial control of up to 17 different GPCR signaling
pathways, providing access to cellular phenotypes that may explain how combinatorial GPCR activation can be
leveraged for the development of new therapies and the GPCR-based circuit architecture could inspire the
development of next-generation sense and response therapeutic cells.
项目总结/摘要
嗅觉受体(Olfactory receptors,ORs)是嗅觉系统中最大的化学检测细胞表面受体家族之一,
人类ORs在嗅觉组织之外表达,其中55个ORs在嗅觉组织中异位表达(exORs)。
18种不同的组织,它们驱动组织特异性过程,包括精子趋化性和肌肉
再生然而,大多数exOR没有已知的配体;它们是孤儿,这限制了它们的能力。
了解它们在人类健康中的作用,包括1)阐明exOR下游途径,
内源性组织,2)exOR内源性配体的鉴定,以及最终3)exOR的评估
作为潜在的治疗靶点。在MIRA续约期间,目标是利用基于OR的传感器
生成大量高质量实验exOR-配体数据以训练机器学习的技术
模型来预测36个目前孤立的exOR的配体。这样的算法将大大加速exOR
这是一种去冗余化,并且可能被证明是通用的,使得能够对所有302个孤立OR进行去冗余化。很长的-
我们的目标是使用已鉴定的激活exOR的配体来梳理它们在人类健康中的作用,包括
鉴定内源性exOR配体在其中过表达的组织中的表达,并确定其在组织中的表达。
他们所参与的下游过程。这种理解将使评估exOR成为可能,
治疗靶点,并为新的一流疗法打开大门。
嗅觉受体属于称为G蛋白偶联受体(GPCR)的细胞表面蛋白类。
非感觉GPCR参与了无数的生物过程,从细胞迁移到免疫,使它们
重要的治疗目标。GPCR信号组合,约100个GPCR在哺乳动物中表达
细胞通过总共17种G蛋白亚型进行信号传导-导致GPCR信号传导之间的广泛串扰
途径,通常具有重要的治疗意义。在理解这一程度方面存在着知识差距
GPCR信号通路串扰及其对细胞过程和动物行为的影响。解剖GPCR
信号通路串扰将使得能够1)鉴定GPCR信号通路,
治疗所需的结果,相对于导致副作用的途径,朝着开发更多的方向发展
精确和更安全的治疗方法,以及2)对GPCR信号传导的更细致的理解,这对于
下一代治疗细胞的工程设计。在MIRA更新期间,目标是制定一个
组合激活/失活多种(≥ 3种)GPCR信号通路的化学遗传学工具集,
为了充分剖析GPCR信号串扰及其生物医学效应,
影响长期目标是最终实现多达17种不同GPCR信号的组合控制
途径,提供细胞表型的途径,这可能解释组合GPCR激活的方式
用于开发新疗法,基于GPCR的电路架构可以激发
开发下一代感觉和反应治疗细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pamela Peralta-Yahya其他文献
Pamela Peralta-Yahya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pamela Peralta-Yahya', 18)}}的其他基金
Olfactory receptor-based sensors for biomedical applications
用于生物医学应用的基于嗅觉受体的传感器
- 批准号:
9382072 - 财政年份:2017
- 资助金额:
$ 36.83万 - 项目类别:
Olfactory receptor-based sensors for biomedical applications
用于生物医学应用的基于嗅觉受体的传感器
- 批准号:
10240662 - 财政年份:2017
- 资助金额:
$ 36.83万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.83万 - 项目类别:
Research Grant