Core C-Research Computing, Bioinformatics, and Biostatistics
核心 C 研究计算、生物信息学和生物统计学
基本信息
- 批准号:10553867
- 负责人:
- 金额:$ 31.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-06 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsApplications GrantsBioinformaticsBiologicalBiometryCellsComplexComputational BiologyConsultationsCustomDataData CollectionData ScienceData SetDedicationsDiseaseEducationEducational workshopEnsureEpigenetic ProcessEventExperimental DesignsExtramural ActivitiesFacultyFunctional disorderGenesGenetic Predisposition to DiseaseGenomicsGoalsHealthHigh Performance ComputingIndividualInfrastructureLeadershipManuscriptsMapsMedical centerMentorsMentorshipMethodologyMissionMississippiMolecularOnset of illnessOrganOrganismPerformancePhasePhysiologicalPhysiologyPilot ProjectsPreparationProgram DescriptionProteomicsReportingReproducibilityResearchResearch PersonnelSchoolsServicesStatistical Data InterpretationStatistical ModelsStudentsSystems BiologySystems DevelopmentTechnical ExpertiseTechnologyTissuesTrainingTraining and EducationUniversitiesVariantanalysis pipelinebody systemcell typedata integrationdatabase designeducation planningepigenomicshuman subjectimprovedinnovationinsightmeetingsmetabolomicsmultidisciplinarynovelnovel strategiespopulation healthpower analysisprogramsservice deliverysuccesstechnological innovationtraining opportunitytranscriptomics
项目摘要
Core C-Abstract
The Molecular Center of Health and Disease (MCHD) will facilitate research under a central theme of
molecular physiology to enhance the depth of education, mentorship, and training of researchers to apply omics
technology and computational biology across the health-disease continuum. Research aimed at understanding
genetic susceptibility and molecular mechanisms involved in disease onset has the potential to halt progression
and return an individual to a healthier state. As advances in technology have allowed for insight into genomic,
transcriptomic, proteomic, and metabolomic complexity, the need to develop computational biology approaches
to integrate and merge these omics datasets along with physiological data (in total systems biology) has become
critical. In total, computational approaches applied to molecular, cellular, and overall pathophysiology associated
with the health-disease continuum can provide important systems biology level information. The mission of the
MCHD will be achieved through synergistic interaction across multiple components including Core A
(administrative oversight, education and mentoring programs, and a pilot project program), two research cores,
and three major project investigators to address diverse questions of health and disease using molecule and
computational approaches. In particular, Core C- Research Computing, Bioinformatics, and Biostatistics
will provide researchers access to high-performance research computing infrastructure, custom bioinformatics
analysis pipelines and biostatistical support. Core C will leverage the comprehensive state-of-the-art omics data
collection pipeline and mechanistic gene-editing and biological approaches from Core B to provide major project
and pilot investigators unique insight into the health-disease continuum. Core C will build new computing
infrastructure at the University, provide vital bioinformatics and computational biology analysis, facilitate a novel
“Bioinformatics and Data Sciences Collaborative”, and leverage and expand current biostatistics services
available through the School of Population Health. The objective of Core C is: (1) provide education and training
opportunities for faculty, trainees, and students in research computing and computational biology approaches;
(2) establish an innovative research computing infrastructure required for analyses of large omics datasets via
standard and custom analyses pipelines to return biologically relevant analyses to MCHD investigators; (3)
provide MCHD investigators access to biostatistical expertise and services for optimal experimental design,
statistical analyses, and interpretation of findings; and (4) to seek continuous improvement in research computing
infrastructure, services, and enhance analytical capabilities through implementation of new approaches,
algorithms, and methodology to assist in the sustainability of the Core. In total, through close coordination with
Core B, this core will establish, grow, and sustain infrastructure to enhance and build systems biology focused
approaches to the health and disease continuum, bring together multidisciplinary expertise to support innovative
extramural research applications of junior investigators, and collaboratively cultivate the success of the MCHD.
核心C-摘要
健康与疾病分子中心(MCHD)将促进以下中心主题下的研究:
分子生理学,以提高教育的深度,指导和培训研究人员应用组学
技术和计算生物学在健康-疾病连续体中的应用。研究旨在了解
与疾病发病有关的遗传易感性和分子机制有可能阻止疾病进展
并使个体恢复到更健康的状态。随着技术的进步,人们可以深入了解基因组,
转录组学,蛋白质组学和代谢组学的复杂性,需要开发计算生物学方法
整合和合并这些组学数据集沿着与生理数据(在总系统生物学中)已经成为
很危险总的来说,计算方法适用于分子,细胞和整体病理生理学相关
与健康-疾病连续体的关系可以提供重要的系统生物学水平信息。联合国的使命
MCHD将通过包括核心A在内的多个组成部分之间的协同互动来实现
(行政监督,教育和指导计划,以及试点项目计划),两个研究核心,
和三个主要的项目研究人员,以解决不同的健康和疾病问题,使用分子和
计算方法。特别是,核心C-研究计算,生物信息学和生物统计学
将为研究人员提供高性能的研究计算基础设施,定制生物信息学
分析管道和生物统计支持。核心C将利用全面的最先进的组学数据
核心B的收集管道和机械基因编辑和生物方法,以提供重大项目
和试点研究人员对健康-疾病连续体的独特见解。Core C将构建新的计算
在大学的基础设施,提供重要的生物信息学和计算生物学分析,促进新的
“生物信息学和数据科学合作”,并利用和扩大目前的生物统计服务
可通过人口健康学院获得。核心C的目标是:(1)提供教育和培训
为教师,学员和学生提供研究计算和计算生物学方法的机会;
(2)建立分析大型组学数据集所需的创新研究计算基础设施,
标准和定制分析管道,将生物学相关分析返回给MCHD研究者;(3)
为MCHD研究者提供生物统计专业知识和服务,以优化实验设计,
统计分析和结果的解释;(4)寻求研究计算的持续改进
基础设施、服务,并通过实施新方法增强分析能力,
算法和方法,以协助核心的可持续性。总的来说,通过与
核心B,该核心将建立、发展和维持基础设施,以增强和构建以系统生物学为重点的
健康和疾病连续体的方法,汇集多学科的专业知识,以支持创新的
初级研究人员的校外研究应用,并协作培养MCHD的成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Mei其他文献
Hao Mei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Mei', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant