Using electronic medical record data to shorten diagnostic odysseys for rare genetic disorders in children and adults in two New York City health care settings
使用电子病历数据缩短纽约市两个医疗机构儿童和成人罕见遗传性疾病的诊断过程
基本信息
- 批准号:10556355
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdolescentAdultAffectAgeAlgorithmsAmbulatory Care FacilitiesBlack raceCaringChildChildhoodClinicalCommunity HospitalsComputerized Medical RecordDNADataDiagnosisDiagnosticDiagnostic testsDiseaseDropsEducationElectronic Health RecordEvaluationFamilyGeneticGenetic ServicesGoalsHealth PersonnelHealthcareHispanicHospitalsInfantInternal MedicineKnowledgeManualsMeasuresMedicalMedical GeneticsModelingNatural Language ProcessingNew York CityOutcomePatientsPhasePilot ProjectsPopulationPredictive ValueProcessRare DiseasesRiskSiteSurveysTestingTimeToddlerTrainingUnderserved Populationage groupagedalgorithm developmentbody systemcare burdencohortelectronic health record systemelectronic structureevaluation/testinggenetic testinghealth care settingsimprovedmultidisciplinarynoveloutpatient programsoutreachpandemic diseasepatient populationpediatric patientspediatricianphenotyping algorithmprogramsrare genetic disordertelehealthtraitworking classyoung adult
项目摘要
Rare genetic diseases affect 3.5-6% of the population and are associated with diagnostic odysseys that can
last up to decades. As first steps towards shortening diagnostic odysseys for infants and toddlers, we
developed rules-based and natural language processing- (NLP-) based algorithms to identify infants and
children aged 0–3 years who were typically ill. Our algorithms were accurate for identify atypical ill patients at
these ages from electronic health records (EHRs). Cohorts so identified were strongly enriched for patients
who had undergone genetic testing. Manual EHR review for such atypically ill patient who had never been
evaluated for a rare genetic disease revealed that 52% could appropriately be referred for such an evaluation.
During the UG3 phase, we will create a novel outpatient clinic, Mount Sinai Genetics Outreach (GO), staffed
with medical geneticists with prior pediatric and internal medicine training, to evaluate patients identified by our
EHR phenotyping algorithms. In a pilot study, we will deploy rules- and NLP-based algorithms to identify 200
children aged 0-12 years with >50% risk of having an undiagnosed rare genetic trait. We will survey
pediatricians at five practices for baseline knowledge about diagnostic odysseys and genetic testing, provide
education about the topic and then study the impact of our algorithm deployment. For patients referred to
Mount Sinai GO, we will determine the outcomes of clinical genetic evaluations and diagnostic testing,
including impact on subsequent health care. In order to improve our existing algorithms, we developed an
automated abstraction engine that identifies patients diagnosed with 164 rare genetic disorders with 83%
accuracy. We will expand this to more traits and use their EHR data to improve our pediatric EHR phenotyping
algorithms. The goal is to increase sensitivity, currently at ~25%, without dropping precision below 50%.
During the UH3 phase, we will deploy our optimized rare disease-detecting algorithms in a non-academic
health care setting, Mount Sinai South Nassau Hospital, a non-academic community hospital setting without
onsite medical genetic services. Our model will leverage pandemic-accelerated expertise in telehealth to
facilitate access of underserved populations to genetics services. Our goal will be to achieve similar sensitivity
and precision with our pediatric algorithms as well as a comparably successful referral mechanism. Also, we
will extend our clinical rule-based and NLP algorithms to detect adolescent and adult patients likely to have
rare genetic disorders and assess the impact of our approach on diagnostic odysseys. We will alter our
pediatric rules-based algorithm, first to patients aged 12-21 years and then to younger adults. We will leverage
our automated abstraction engine for rare genetic disease for iterative improvements. For adults, we will class
traits by organ system in order to improve cohort size/statistical power. Finally, we will assemble and study
information about diagnostic odysseys per se, including the impact of our algorithms in shortening them.
罕见的遗传病影响3.5-6%的人口,并与诊断奥德赛,可以
可持续数十年。作为缩短婴幼儿诊断过程的第一步,我们
开发了基于规则和自然语言处理(NLP)的算法来识别婴儿,
0-3岁的儿童,他们通常生病。我们的算法在识别非典型疾病患者方面是准确的,
电子健康记录(EHR)。如此确定的队列中,
他们接受了基因检测。为从未接受过电子病历检查的此类精神病患者进行手动电子病历检查
评估一种罕见的遗传性疾病显示,52%的人可以适当地进行这种评估。
在UG 3阶段,我们将创建一个新的门诊诊所,西奈山遗传学外展(GO),
与医学遗传学家与以前的儿科和内科培训,以评估患者确定我们的
EHR表型分析算法。在试点研究中,我们将部署基于规则和NLP的算法来识别200个
0-12岁的儿童有>50%的风险患有未诊断的罕见遗传特征。我们将调查
儿科医生在五个实践的基础知识,关于诊断奥德赛和基因检测,提供
教育有关的主题,然后研究我们的算法部署的影响。对于转诊的患者
西奈山GO,我们将确定临床遗传评估和诊断测试的结果,
包括对后续医疗保健的影响。为了改进我们现有的算法,我们开发了一个
自动化抽象引擎,识别出被诊断患有164种罕见遗传疾病的患者,其中83%
精度我们将把它扩展到更多的特征,并使用他们的EHR数据来改善我们的儿科EHR表型
算法我们的目标是提高灵敏度,目前约为25%,而精度不低于50%。
在UH 3阶段,我们将在一个非学术性的平台上部署我们优化的罕见疾病检测算法。
医疗保健设置,西奈山南拿骚医院,一个非学术社区医院设置,没有
现场医疗遗传服务。我们的模式将利用远程医疗中的流行病加速专业知识,
促进得不到充分服务的人口获得遗传学服务。我们的目标是实现类似的灵敏度
我们的儿科算法以及非常成功的转诊机制。另外我们
我们将扩展我们的临床规则和NLP算法,以检测青少年和成年患者可能有
罕见的遗传性疾病,并评估我们的方法对诊断奥德赛的影响。我们将改变我们的
儿科基于规则的算法,首先是12-21岁的患者,然后是年轻的成年人。我们将利用
我们的罕见遗传疾病自动化抽象引擎,用于迭代改进。对于成年人,我们将上课
通过器官系统的特征,以提高队列大小/统计功效。最后,我们将集合并学习
关于诊断奥德赛本身的信息,包括我们的算法在缩短它们方面的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISHA BALWANI其他文献
MANISHA BALWANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISHA BALWANI', 18)}}的其他基金
Using electronic medical record data to shorten diagnostic odysseys for rare genetic disorders in children and adults in two New York City health care settings
使用电子病历数据缩短纽约市两个医疗机构儿童和成人罕见遗传性疾病的诊断过程
- 批准号:
10395124 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Clinical and Molecular Studies of the Erythropoietic Protoporphyria Phenotype
红细胞生成性原卟啉症表型的临床和分子研究
- 批准号:
8866392 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Clinical and Molecular Studies of the Erythropoietic Protoporphyria Phenotype
红细胞生成性原卟啉症表型的临床和分子研究
- 批准号:
8509354 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Clinical and Molecular Studies of the Erythropoietic Protoporphyria Phenotype
红细胞生成性原卟啉症表型的临床和分子研究
- 批准号:
8617270 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Administrative Supplemental for Porphyria Rare Disease Clinical Research Consortium (RDCRC)
卟啉症罕见病临床研究联盟 (RDCRC) 行政补充文件
- 批准号:
10599619 - 财政年份:2009
- 资助金额:
$ 33.8万 - 项目类别:
相似海外基金
Enhancing Structural Competency in School-Based Health Centers to Address LGBTQ+ Adolescent Health Equity
增强校本健康中心的结构能力,以解决 LGBTQ 青少年健康公平问题
- 批准号:
10608426 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Application and feasability of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care - a pilot study
简短的数字筛查工具的应用和可行性,以解决儿科医疗中父母和青少年烟草和电子烟的使用问题 - 一项试点研究
- 批准号:
486580 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Studentship Programs
Co-design of an intervention to address alcohol use among adolescent boys and young men in Tanzania
共同设计一项干预措施,解决坦桑尼亚青春期男孩和年轻男性的饮酒问题
- 批准号:
MR/V032380/1 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
Application of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care
应用简短的数字筛查工具来解决儿科医疗中父母和青少年烟草和电子烟的使用问题
- 批准号:
455984 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Operating Grants
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10057761 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10213683 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 33.8万 - 项目类别:
Designing targeted interventions to address HIV vulnerabilities and improve clinical outcomes among conflict affected adolescent girls and young women under 25 in Northern Uganda
设计有针对性的干预措施,以解决乌干达北部受冲突影响的少女和 25 岁以下年轻妇女的艾滋病毒脆弱性并改善临床结果
- 批准号:
356145 - 财政年份:2016
- 资助金额:
$ 33.8万 - 项目类别:
Operating Grants














{{item.name}}会员




