The volume-regulated anion channel as a regulator of secretory activity in the intestinal epithelium
容量调节阴离子通道作为肠上皮分泌活性的调节剂
基本信息
- 批准号:10557101
- 负责人:
- 金额:$ 4.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAdenosine DiphosphateAgeAnionsAntidiarrhealsBiological AssayBiosensorCRISPR/Cas technologyCalciumCalcium OscillationsCalcium SignalingCellsChildDataDiarrheaDisciplineDysenteryEnterocytesEpithelial CellsEpitheliumEquilibriumEventFluids and SecretionsFrequenciesGastrointestinal tract structureGenesGeneticHealthHomeostasisHumanImageInfectionIntestinesIonsKnock-outKnowledgeLifeMediatingMissionMorbidity - disease rateMusNonstructural ProteinOrganoidsParacrine CommunicationPathogenesisPathologic ProcessesPathway interactionsPhenotypePhysiologic pulsePlayProtein KinaseProteinsRecombinantsRegulationResearchRho-associated kinaseRoleRotavirusRotavirus InfectionsSeveritiesSignal PathwaySignal TransductionSignaling MoleculeSwellingTestingTherapeuticUnited States National Institutes of HealthVariantViralWorkburden of illnessclinically relevantin vivoinsightintercellular communicationintestinal epitheliumknock-downmortalitymouse modelnew therapeutic targetnoveloptogeneticspathogenic viruspharmacologicpurinoceptor P2Y1rhosmall hairpin RNAstressortargeted treatmenttool
项目摘要
PROJECT SUMMARY
The intestinal epithelium relies on extensive cell-cell signaling to maintain a tight balance between absorptive
and secretory activity, but the intricacies of this signaling remain uncharacterized. We recently discovered that
cells infected with rotavirus, the most common cause of life-threatening diarrhea worldwide, release hundreds of
pulses of adenosine diphosphate (ADP) causing intercellular calcium waves that dysregulate uninfected cells.
Blocking the ADP receptor P2Y1 significantly reduces diarrhea severity in rotavirus-infected mice, suggesting
that this signaling is integral in regulating secretory activity. While the mechanism through which rotavirus triggers
the release of ADP has not been confirmed, our preliminary data show it relies on activation of the volume-
regulated anion channel (VRAC). VRAC is increasingly recognized as a conduit for paracrine signals
associated with a variety of intracellular stressors, but it has yet to be studied within the epithelium. Further, the
mechanisms regulating its activation in any context remain poorly understood. Therefore, the objective of this
proposal is to use rotavirus as a tool to study the role and activation of VRAC in the intestinal epithelium. Given
that rotavirus-induced intercellular calcium waves are inhibited by knock down of rotavirus non-structural protein
4 (NSP4), a Ca2+-conducting channel, my central hypothesis is that NSP4-induced elevations of cytosolic
Ca2+ activate host pathways that trigger ADP release through VRAC, amplifying secretory activity
throughout the epithelium. I will test this hypothesis by using long-term live calcium imaging in conjunction
with novel fluorescent Rho biosensors and CRISPR-Cas9 based gene editing to [Aim 1] determine the
intracellular pathway mediating VRAC activation in RV-infected cells. Given ADP release is reduced upon
pharmacological inhibition of Rho kinase or knockdown of the calcium-augmenting rotavirus protein NSP4, we
expect both calcium and Rho are involved in VRAC activation. Using both human intestinal enteroids and the
mouse model of rotavirus diarrhea, I will [Aim 2] determine the effect of VRAC activation on secretory activity in
the intestinal epithelium. This work will identify novel therapeutic targets for the treatment of secretory diarrhea,
a leading cause of mortality among children worldwide. Furthermore, our findings will address gaps in knowledge
surrounding VRAC activation and its role in paracrine signaling. Given that VRAC has been implicated in an
increasing variety of pathological processes, using this clinically relevant approach will yield information
translatable to both human health and other scientific disciplines.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Thomas Gebert其他文献
John Thomas Gebert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Thomas Gebert', 18)}}的其他基金
The volume-regulated anion channel as a regulator of secretory activity in the intestinal epithelium
容量调节阴离子通道作为肠上皮分泌活性的调节剂
- 批准号:
10464156 - 财政年份:2022
- 资助金额:
$ 4.81万 - 项目类别:
相似海外基金
Mitochondrial Creatine Kinase-deficient Mice: Effects on Adenosine Diphosphate Transport and Metabolic Homeostasis during Exercise
线粒体肌酸激酶缺陷小鼠:运动过程中对二磷酸腺苷转运和代谢稳态的影响
- 批准号:
480897-2015 - 财政年份:2015
- 资助金额:
$ 4.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The mechanism of adenosine diphosphate receptor mediated thrombus formation in antiphospholipid syndrome.
抗磷脂综合征中二磷酸腺苷受体介导血栓形成的机制。
- 批准号:
25670455 - 财政年份:2013
- 资助金额:
$ 4.81万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




