Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
基本信息
- 批准号:10557897
- 负责人:
- 金额:$ 43.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAnimalsAntioxidantsAscorbic AcidBeta CellCell CycleCell Differentiation processCell physiologyCellsCitric Acid CycleComplexDNADNA MethylationDNA Modification MethylasesDNMT3aDataDefectDevelopmentDiabetes MellitusDiabetic mouseDiseaseDisease ProgressionDisease modelEmbryoEndocrineEnvironmentEnvironmental Risk FactorEnzymesEpigenetic ProcessEquilibriumExposure toFailureFunctional disorderGlucoseGoalsGrowth and Development functionHealthHomeostasisHumanHydroxylationImpairmentInsulinInsulin-Dependent Diabetes MellitusLinkMapsMediatingMetabolicMetabolismMethodsMusNatureNeonatalNon-Insulin-Dependent Diabetes MellitusOxidative StressPancreasPatternPersonsPhenotypePolycombPredispositionPublic HealthPublishingRegulationRegulatory PathwayRejuvenationResearchRoleShapesStimulusTestingTissuesUnited StatesVariantWorkage relatedalpha ketoglutarateantagonistbeta cell replacementbetacell therapycofactordefined contributiondemethylationdiabetes mellitus therapydiabetes pathogenesisdiabetes riskdiabeticendocrine pancreas developmentepigenetic profilingepigenomefunctional lossgenome-wideimprovedinsulin secretioninterestisletmethylation patternmouse geneticsmouse modelnovelpreservationprogenitorresponseself-renewalstem cellstherapeutically effectivetype I and type II diabetes
项目摘要
PROJECT SUMMARY/ABSTRACT
Diabetes has become a major public health crisis, afflicting nearly 30 million people in the United States, and
these numbers continue to rise at an alarming rate. Both type 1 and type 2 diabetes result from insulin
insufficiency, in large part due to loss of functional beta-cells. Significant research efforts are currently focused
on understanding beta-cell failure in diabetes, and developing effective therapeutic approaches to replenishing
the beta-cell deficit in diabetes. Despite significant advances in these aspects, challenges remain in development
of effective beta-cell therapies, primarily due to gaps in our current understanding of mechanisms that regulate
normal beta-cell development, function, and growth. Our recent work has identified DNA methylation as a pivotal
epigenetic mechanism that regulates beta-cell identity and function. Moreover, we found that DNA methylation
patterns defining functional beta-cell phenotype are disrupted in the diabetic beta-cells, suggesting dynamic
nature of DNA methylation. Our preliminary studies indicate that dynamic remodeling of DNA methylation (5-
methylcytosine; 5mC) via its conversion to a hydroxylated form (5-hydroxymethylcytosine; 5hmC) is essential for
beta-cell differentiation, function, and adaptive response. We hypothesize that stage-specific, appropriate
patterning of 5mC and 5hmC is critical for beta-cell homeostasis, and is disrupted in diabetes leading to beta-
cell failure. Thus, we seek to determine how enzymatic regulation of the balance between 5mC and 5hmC
governs functional beta-cell mass and affects diabetes susceptibility. We will employ mouse genetics, disease
models, human islet studies, and state-of-the-art genome wide epigenetic profiling methods to address the
following aims: In Specific Aim 1, we aim to establish the requirement of 5mC and 5hmC patterning in
differentiation of beta-cells from progenitors. Specific Aim 2 seeks to define the contribution of dynamic
remodeling of 5mC and 5hmC patterns in beta-cell replication and adaptive capacity. In Specific Aim 3, we
address if and how environmental factors like oxidative stress and metabolite variation can disrupt the beta-cell
5mC 5hmC landscape to drive beta-cell failure, and diabetes.
The proposed studies will delineate a novel regulatory module that governs beta-cell development and
growth, and establish a fundamental regulatory paradigm that link beta-cell environment, metabolism and
epigenome. Our work is likely to have a broad and significant impact by providing novel clues to promote beta-
cell differentiation, function, and expansion towards strategies aimed at beta-cell rejuvenation and replacement
for diabetes therapy.
项目总结/摘要
糖尿病已成为一个重大的公共卫生危机,困扰着美国近3000万人,
这些数字继续以惊人的速度上升。1型和2型糖尿病都是由胰岛素引起的
这在很大程度上是由于功能性β细胞的丧失。目前主要的研究工作集中在
了解糖尿病中的β细胞衰竭,并开发有效的治疗方法,
糖尿病中的β细胞缺陷。尽管在这些方面取得了重大进展,
有效的β细胞疗法,主要是由于我们目前对调控机制的理解存在差距,
正常的β细胞发育、功能和生长。我们最近的工作已经确定DNA甲基化是
调节β细胞身份和功能的表观遗传机制。此外,我们发现DNA甲基化
在糖尿病β细胞中,定义功能β细胞表型的模式被破坏,这表明动态
DNA甲基化的本质我们的初步研究表明,DNA甲基化的动态重塑(5-
甲基胞嘧啶(5 mC)通过其转化为羟基化形式(5-羟甲基胞嘧啶; 5 hmC)是必不可少的
β细胞分化、功能和适应性反应。我们假设特定阶段的,适当的
5 mC和5 hmC的模式对于β细胞稳态是至关重要的,并且在糖尿病中被破坏,导致β-
细胞故障。因此,我们试图确定酶如何调节5 mC和5 hmC之间的平衡,
控制功能性β细胞群并影响糖尿病易感性。我们将利用老鼠的遗传学,疾病
模型,人类胰岛研究,以及最先进的全基因组表观遗传分析方法,以解决
以下目标:在具体目标1中,我们的目标是建立5 mC和5 hmC模式的要求,
从祖细胞分化β细胞。具体目标2旨在确定动态的贡献
β细胞复制和适应能力中5 mC和5 hmC模式的重塑。在具体目标3中,我们
解决环境因素如氧化应激和代谢物变异是否以及如何破坏β细胞
5 mC和5 hmC环境导致β细胞衰竭和糖尿病。
拟议的研究将描绘一种新的调控模块,控制β细胞发育,
生长,并建立一个基本的监管模式,连接β细胞环境,代谢和
表观基因组。我们的工作可能会产生广泛而重大的影响,提供新的线索,以促进β-
细胞分化、功能和扩增,以实现β细胞再生和替代的策略
用于糖尿病治疗。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangeeta Dhawan其他文献
Sangeeta Dhawan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangeeta Dhawan', 18)}}的其他基金
Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
- 批准号:
9905515 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
- 批准号:
10356798 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
- 批准号:
10090591 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 43.25万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 43.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 43.25万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 43.25万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 43.25万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 43.25万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 43.25万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




