Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
基本信息
- 批准号:10557897
- 负责人:
- 金额:$ 43.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAnimalsAntioxidantsAscorbic AcidBeta CellCell CycleCell Differentiation processCell physiologyCellsCitric Acid CycleComplexDNADNA MethylationDNA Modification MethylasesDNMT3aDataDefectDevelopmentDiabetes MellitusDiabetic mouseDiseaseDisease ProgressionDisease modelEmbryoEndocrineEnvironmentEnvironmental Risk FactorEnzymesEpigenetic ProcessEquilibriumExposure toFailureFunctional disorderGlucoseGoalsGrowth and Development functionHealthHomeostasisHumanHydroxylationImpairmentInsulinInsulin-Dependent Diabetes MellitusLinkMapsMediatingMetabolicMetabolismMethodsMusNatureNeonatalNon-Insulin-Dependent Diabetes MellitusOxidative StressPancreasPatternPersonsPhenotypePolycombPredispositionPublic HealthPublishingRegulationRegulatory PathwayRejuvenationResearchRoleShapesStimulusTestingTissuesUnited StatesVariantWorkage relatedalpha ketoglutarateantagonistbeta cell replacementbetacell therapycofactordefined contributiondemethylationdiabetes mellitus therapydiabetes pathogenesisdiabetes riskdiabeticendocrine pancreas developmentepigenetic profilingepigenomefunctional lossgenome-wideimprovedinsulin secretioninterestisletmethylation patternmouse geneticsmouse modelnovelpreservationprogenitorresponseself-renewalstem cellstherapeutically effectivetype I and type II diabetes
项目摘要
PROJECT SUMMARY/ABSTRACT
Diabetes has become a major public health crisis, afflicting nearly 30 million people in the United States, and
these numbers continue to rise at an alarming rate. Both type 1 and type 2 diabetes result from insulin
insufficiency, in large part due to loss of functional beta-cells. Significant research efforts are currently focused
on understanding beta-cell failure in diabetes, and developing effective therapeutic approaches to replenishing
the beta-cell deficit in diabetes. Despite significant advances in these aspects, challenges remain in development
of effective beta-cell therapies, primarily due to gaps in our current understanding of mechanisms that regulate
normal beta-cell development, function, and growth. Our recent work has identified DNA methylation as a pivotal
epigenetic mechanism that regulates beta-cell identity and function. Moreover, we found that DNA methylation
patterns defining functional beta-cell phenotype are disrupted in the diabetic beta-cells, suggesting dynamic
nature of DNA methylation. Our preliminary studies indicate that dynamic remodeling of DNA methylation (5-
methylcytosine; 5mC) via its conversion to a hydroxylated form (5-hydroxymethylcytosine; 5hmC) is essential for
beta-cell differentiation, function, and adaptive response. We hypothesize that stage-specific, appropriate
patterning of 5mC and 5hmC is critical for beta-cell homeostasis, and is disrupted in diabetes leading to beta-
cell failure. Thus, we seek to determine how enzymatic regulation of the balance between 5mC and 5hmC
governs functional beta-cell mass and affects diabetes susceptibility. We will employ mouse genetics, disease
models, human islet studies, and state-of-the-art genome wide epigenetic profiling methods to address the
following aims: In Specific Aim 1, we aim to establish the requirement of 5mC and 5hmC patterning in
differentiation of beta-cells from progenitors. Specific Aim 2 seeks to define the contribution of dynamic
remodeling of 5mC and 5hmC patterns in beta-cell replication and adaptive capacity. In Specific Aim 3, we
address if and how environmental factors like oxidative stress and metabolite variation can disrupt the beta-cell
5mC 5hmC landscape to drive beta-cell failure, and diabetes.
The proposed studies will delineate a novel regulatory module that governs beta-cell development and
growth, and establish a fundamental regulatory paradigm that link beta-cell environment, metabolism and
epigenome. Our work is likely to have a broad and significant impact by providing novel clues to promote beta-
cell differentiation, function, and expansion towards strategies aimed at beta-cell rejuvenation and replacement
for diabetes therapy.
项目摘要/摘要
糖尿病已成为主要的公共卫生危机,在美国遭受了近3000万人的困扰,并
这些数字继续以惊人的速度上升。 1型和2型糖尿病是由胰岛素引起的
不足,在很大程度上是由于功能β细胞的损失。目前重点的重大研究工作
了解糖尿病中的β细胞衰竭,并开发有效的治疗方法来补充
糖尿病中的β细胞赤字。尽管这些方面取得了重大进展,但挑战仍在发展中
有效的β细胞疗法,主要是由于我们当前对调节机制的理解的差距
正常的β细胞发育,功能和增长。我们最近的工作已将DNA甲基化确定为关键
调节β细胞身份和功能的表观遗传机制。此外,我们发现DNA甲基化
定义功能性β细胞表型的模式在糖尿病β细胞中被破坏,表明动态
DNA甲基化的性质。我们的初步研究表明,DNA甲基化的动态重塑(5-
甲基胞嘧啶; 5MC)通过其转化为羟基化形式(5-羟基甲基胞嘧啶; 5HMC)对于对
β细胞分化,功能和自适应响应。我们假设那个阶段特定的,适当的
5MC和5HMC的构图对于β细胞稳态至关重要,并且在糖尿病中破坏了β-
细胞衰竭。因此,我们试图确定如何对5MC和5HMC之间平衡的酶促调节
控制功能性β细胞质量并影响糖尿病的敏感性。我们将采用小鼠遗传学,疾病
模型,人类胰岛研究和最先进的基因组广泛的表观遗传分析方法来解决
以下目的:在特定目标1中,我们旨在确定5MC和5HMC图案的要求
β细胞与祖细胞的分化。特定目标2试图定义动态的贡献
在Beta细胞复制和适应能力中重塑5MC和5HMC模式。在特定的目标3中,我们
解决氧化应激和代谢物变化等环境因素是否以及如何破坏β细胞
5MC 5HMC景观以驱动β细胞衰竭和糖尿病。
拟议的研究将描述一个新型的监管模块,该模块控制β细胞的发展和
增长并建立一个基本的监管范式,将β细胞环境,代谢和
表观基因组。我们的工作可能通过提供新的线索来促进β-
细胞分化,功能和扩展针对旨在Beta细胞恢复和替换的策略
用于糖尿病治疗。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangeeta Dhawan其他文献
Sangeeta Dhawan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangeeta Dhawan', 18)}}的其他基金
Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
- 批准号:
9905515 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
- 批准号:
10356798 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
Regulation of beta-cell homeostasis by DNA methylation and hydroxymethylation.
通过 DNA 甲基化和羟甲基化调节 β 细胞稳态。
- 批准号:
10090591 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别: