Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers

基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像

基本信息

  • 批准号:
    10596209
  • 负责人:
  • 金额:
    $ 60.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This proposal aims to develop a first non-cryogenic fieldable multichannel system to enable interleaved measurements of magnetic resonance imaging (MRI) in the ultra-low field (ULF) regime (<< 1 T) and magneto- encephalography (MEG) of the human brain. The combination of the two modalities is uniquely capable of linking the sources of biomagnetic brain activity (MEG) to the specific anatomical brain structure (ULF MRI) with both excellent temporal and spatial resolution. In addition, the combination essentially eliminates co-registration errors based on the common MEG-MRI coordinate system. This advanced biomedical technology will enhance understanding of human brain function, aid in diagnosis and treatment of multiple brain disorders such as the epileptic focus, and improve neurosurgical planning. Previously, the MEG-MRI combination was realized only using multiple cryogenic superconducting quantum interference device (SQUID) sensors. However, the demand for cryo-cooling and a shielded room is a major drawback. We will build a more practical device by replacing SQUIDs with a novel type of atomic magnetometers (AMs). Based on lasers and alkali-metal vapor cells, AMs are currently the most sensitive cryogen-free magnetic sensors. Specific aims are to: (1) Develop an original compact 16-channel AM module for MEG. It delivers a large number of sensing channels based on a single large vapor cell and two broad nearly parallel laser beams. This new approach leads to significant cost reduction compared to commercial SQUID-based MEG systems. (2) Construct a wearable full-head MEG helmet. We will produce 15–20 compact AM MEG modules for mounting on a helmet for full-head coverage with up to 320 channels. Due to the laser-to-fiber coupling, the module positions will be adjustable for different head geometries for closer proximity of sensors to the head. This will result in improved localization and sensitivity. We will obtain functional brain maps with the MEG helmet. (3) Construct a new multichannel ULF MRI device based on a single- module multichannel AM coupled to multiple flux transformers (FTs). For MRI, the AM design will be modified to allow orthogonal laser beams, and a bias magnetic field will be applied to tune the AM to target MRI frequencies of ~200 kHz. Each FT will be composed of two connected coils, one located near the human head and the other near the AM vapor cell, to transfer MRI signals to the AM. The FT coils can be flexibly arranged around the human head to enhance an MRI signal. We will demonstrate ULF MRI measurements of the human head with an optimized FT array. (4) Combine the full-head MEG helmet and the ULF MRI device in a single instrument. The combination will be achieved by attaching the MRI FT coils to the MEG helmet. The device will be installed in a shielded room for a proof of feasibility and then in a human-sized cylindrical mu-metal magnetic shield for enabling mobile applications. We will perform interleaved imaging of brain activity and structure with high temporal and spatial resolution. We will also develop MEG and MRI algorithms for data acquisition/analysis and high accuracy biomagnetic source localization.
该提案旨在开发第一个非晶体可供球多多通道系统,以使交错 在超低场(ULF)方案(<< 1 t)和磁通磁场中的磁共振成像(MRI)的测量 人脑的脑电图(MEG)。这两种方式的结合具有独特的能力 生物磁性大脑活性(MEG)的来源,以及特定的解剖学脑结构(ULF MRI) 出色的临时和空间分辨率。此外,该组合基本上消除了共同注册错误 基于常见的MEG-MRI坐标系。这种先进的生物医学技术将增强 了解人脑功能,有助于诊断和治疗多种脑疾病,例如 癫痫的重点,并改善神经外科计划。以前,仅实现了MEG-MRI组合 使用多个低温超导量子干扰装置(Squid)传感器。但是,需求 对于冷却冷却和屏蔽房间,是一个主要缺点。我们将通过更换来构建一个更实用的设备 具有新型原子磁力计(AMS)的新型鱿鱼。基于激光和碱金属蒸气细胞AMS 目前是最敏感的无低温磁性传感器。具体目的是:(1)开发原始 MEG的紧凑型16通道AM模块。它基于一个大型传感器频道提供了大量的传感器频道 蒸气电池和两个宽阔的平行激光梁。这种新方法导致大幅降低成本 与基于商业鱿鱼的MEG系统相比。 (2)构建一个可穿戴的全头梅格头盔。我们将 生产15–20紧凑型AM MEG模块,用于安装在头盔上,以全面覆盖,最多320 频道。由于激光对纤维耦合,模块位置将针对不同的头部几何形状进行调节 为了近距离接近传感器的头部。这将提高定位和敏感性。我们将获得 用MEG头盔映射功能性的大脑。 (3)基于单个的新型多通道ULF MRI设备 模块多通道AM耦合到多通量变压器(FTS)。对于MRI,AM设计将被修改为 允许正交激光束,并将偏置磁场用于调整AM以靶向MRI频率 约200 kHz。每个英尺将由两个连接的线圈组成,一个线圈位于人头附近,另一个位于另一个线圈 在AM蒸气电池附近,将MRI信号转移到AM。 FT线圈可以在 人头增强MRI信号。我们将通过 优化的FT数组。 (4)将全头MEG头盔和ULF MRI设备组合在单个仪器中。 通过将MRI FT线圈连接到MEG头盔来实现该组合。设备将安装 在屏蔽的房间中以提供可行性证明 启用移动应用程序。我们将对大脑活动和结构进行交织的成像 临时和空间分辨率。我们还将开发用于数据获取/分析的MEG和MRI算法以及 高精度生物磁源定位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Young Jin Kim其他文献

Young Jin Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 60.03万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 60.03万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 60.03万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 60.03万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 60.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了