Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers
基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像
基本信息
- 批准号:10596209
- 负责人:
- 金额:$ 60.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAlkali MetalsAnatomyAreaBiomedical TechnologyBrainBrain DiseasesBrain MappingBrain imagingCardiacCellsChestChildhoodClinicClinicalCoupledCouplingDedicationsDeteriorationDevelopmentDevicesDiagnosisEpilepsyFatigueFiberFrequenciesGeometryHeadHelmetHospitalsHumanHybridsImageImage EnhancementLaboratoriesLasersLinkLocationMagnetic Resonance ImagingMagnetismMagnetoencephalographyMeasurementMetalsMethodsModalityNeurologicPatientsPerformancePhysiologic pulsePositioning AttributeProductionPublic HealthResearchResolutionServicesSignal TransductionSourceSpeedStructureSystemTechnologyTestingTimeWaterWorkcostcryogenicsdata acquisitiondesignfield studyflexibilityhealth care servicehuman imagingimaging systemimprovedinsightinstrumentmagnetic devicesmagnetic fieldmathematical abilitymobile applicationneuroimagingneurosurgerynovelnovel strategiesoperationportabilitypreventprototypesensorsource localizationsuburbsuperconducting quantum interference devicevapor
项目摘要
This proposal aims to develop a first non-cryogenic fieldable multichannel system to enable interleaved
measurements of magnetic resonance imaging (MRI) in the ultra-low field (ULF) regime (<< 1 T) and magneto-
encephalography (MEG) of the human brain. The combination of the two modalities is uniquely capable of linking
the sources of biomagnetic brain activity (MEG) to the specific anatomical brain structure (ULF MRI) with both
excellent temporal and spatial resolution. In addition, the combination essentially eliminates co-registration errors
based on the common MEG-MRI coordinate system. This advanced biomedical technology will enhance
understanding of human brain function, aid in diagnosis and treatment of multiple brain disorders such as the
epileptic focus, and improve neurosurgical planning. Previously, the MEG-MRI combination was realized only
using multiple cryogenic superconducting quantum interference device (SQUID) sensors. However, the demand
for cryo-cooling and a shielded room is a major drawback. We will build a more practical device by replacing
SQUIDs with a novel type of atomic magnetometers (AMs). Based on lasers and alkali-metal vapor cells, AMs
are currently the most sensitive cryogen-free magnetic sensors. Specific aims are to: (1) Develop an original
compact 16-channel AM module for MEG. It delivers a large number of sensing channels based on a single large
vapor cell and two broad nearly parallel laser beams. This new approach leads to significant cost reduction
compared to commercial SQUID-based MEG systems. (2) Construct a wearable full-head MEG helmet. We will
produce 15–20 compact AM MEG modules for mounting on a helmet for full-head coverage with up to 320
channels. Due to the laser-to-fiber coupling, the module positions will be adjustable for different head geometries
for closer proximity of sensors to the head. This will result in improved localization and sensitivity. We will obtain
functional brain maps with the MEG helmet. (3) Construct a new multichannel ULF MRI device based on a single-
module multichannel AM coupled to multiple flux transformers (FTs). For MRI, the AM design will be modified to
allow orthogonal laser beams, and a bias magnetic field will be applied to tune the AM to target MRI frequencies
of ~200 kHz. Each FT will be composed of two connected coils, one located near the human head and the other
near the AM vapor cell, to transfer MRI signals to the AM. The FT coils can be flexibly arranged around the
human head to enhance an MRI signal. We will demonstrate ULF MRI measurements of the human head with
an optimized FT array. (4) Combine the full-head MEG helmet and the ULF MRI device in a single instrument.
The combination will be achieved by attaching the MRI FT coils to the MEG helmet. The device will be installed
in a shielded room for a proof of feasibility and then in a human-sized cylindrical mu-metal magnetic shield for
enabling mobile applications. We will perform interleaved imaging of brain activity and structure with high
temporal and spatial resolution. We will also develop MEG and MRI algorithms for data acquisition/analysis and
high accuracy biomagnetic source localization.
该提案旨在开发第一个非低温可现场多通道系统,以实现交错
超低场 (ULF) 状态 (<< 1 T) 和磁电磁共振成像 (MRI) 测量
人脑脑电图(MEG)。两种模式的结合具有独特的链接能力
生物磁脑活动 (MEG) 的来源到特定的大脑解剖结构 (ULF MRI)
出色的时间和空间分辨率。此外,该组合基本上消除了共同配准错误
基于通用的MEG-MRI坐标系。这项先进的生物医学技术将增强
了解人类大脑功能,有助于诊断和治疗多种脑部疾病,例如
癫痫焦点,并改善神经外科计划。此前,MEG-MRI组合仅实现
使用多个低温超导量子干涉装置(SQUID)传感器。然而,需求
低温冷却和屏蔽室是一个主要缺点。我们将通过替换来构建更实用的设备
带有新型原子磁力计 (AM) 的 SQUID。基于激光和碱金属蒸气电池的 AM
是目前最灵敏的无制冷剂磁传感器。具体目标是: (1) 开发原创
适用于 MEG 的紧凑型 16 通道 AM 模块。它基于单个大型传感器提供大量传感通道
蒸汽室和两束近乎平行的宽激光束。这种新方法可显着降低成本
与基于 SQUID 的商用 MEG 系统相比。 (2) 构建可穿戴式全头MEG头盔。我们将
生产 15–20 个紧凑型 AM MEG 模块,用于安装在头盔上,覆盖最多 320 个头部
渠道。由于激光与光纤的耦合,模块位置可针对不同的头部几何形状进行调整
让传感器更接近头部。这将提高定位和灵敏度。我们将获得
使用 MEG 头盔绘制功能性脑图。 (3)基于单通道构建新型多通道ULF MRI装置
模块多通道 AM 耦合到多个磁通变压器 (FT)。对于 MRI,AM 设计将修改为
允许正交激光束,并且将应用偏置磁场来将 AM 调整到目标 MRI 频率
约 200 kHz。每个 FT 将由两个连接的线圈组成,一个位于人体头部附近,另一个位于人体头部附近
靠近 AM 蒸汽室,将 MRI 信号传输到 AM。 FT线圈可以灵活地布置在
人体头部增强 MRI 信号。我们将演示人体头部的 ULF MRI 测量
优化的 FT 阵列。 (4)将全头MEG头盔和ULF MRI设备结合在一台仪器中。
该组合将通过将 MRI FT 线圈连接到 MEG 头盔来实现。设备将被安装
在屏蔽室中进行可行性证明,然后在人体大小的圆柱形高导磁合金磁屏蔽中进行
启用移动应用程序。我们将对大脑活动和结构进行高交错成像
时间和空间分辨率。我们还将开发用于数据采集/分析的 MEG 和 MRI 算法
高精度生物磁源定位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young Jin Kim其他文献
Young Jin Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 60.03万 - 项目类别:
Research Grant














{{item.name}}会员




