Using Data Analytics and Targeted Whole Health Coaching to Reduce Frequent Utilization of Acute Care among Homeless Veterans
使用数据分析和有针对性的整体健康指导来减少无家可归的退伍军人对紧急护理的频繁使用
基本信息
- 批准号:10595672
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AcademyAlgorithmsAmbulatory CareAppointmentCaringChronicClinicalCommunitiesComplexConsolidated Framework for Implementation ResearchDataData AnalyticsDevelopmentDisease ManagementEmergency medical serviceFeesFinancial HardshipFutureGoalsHealthHealth Care CostsHealthcareHealthcare SystemsHomelessnessHospitalizationHousingInformaticsInterventionInterviewLinkMediatingMedicalMedicineMental HealthMental disordersMethodologyModelingOutcomePatient-Centered CarePatientsPersonal SatisfactionPilot ProjectsPremature MortalityPrimary CareProcessQuality of CareRandomizedRandomized, Controlled TrialsRecommendationRegistriesReportingResearchResearch PriorityResourcesRiskRisk ReductionRoleServicesSiteSpecialistStructureSuicide preventionTestingTextText MessagingTimeTractionTrainingVeteransVocationWorkacute carebudget impactcare costscare systemscomorbiditycostdashboarddata integrationeffectiveness/implementation hybridexperiencehealth goalshigh riskhybrid type 1 designimplementation trialinformantinnovationinpatient servicepatient navigationpatient orientedpeerphysical conditioningpoor health outcomeprediction algorithmprimary care practiceprimary care servicesprimary outcomeprocess evaluationprogramspsychosocial rehabilitationrecruitsocial determinantssocial stigmasubstance usesuicidal risktreatment as usualwhole health
项目摘要
Background: Ten percent of patients account for up to 70% of acute care costs. Among these “super-utilizer”
patients, homelessness is a robust social determinant of acute care utilization. Through a field-based
dashboard and clinical aids, the Hot Spotter Analytic program assists Patient Aligned Care Teams (PACT) with
targeting and tailoring care for the highest-need homeless Veterans. However, many Veterans identified by the
Analytics do not engage in supportive services that reduce risk for acute care utilization. Peer Specialists (PS)
are a high-value workforce that can facilitate Veterans’ engagement in care. Yet, there is a need to enhance
the PS role with a structured approach that can capitalize on known facilitators of care engagement among
homeless Veterans. Whole Health Coaching (WHC) is one such approach. By focusing on patients’ values and
goals rather than treatment of specific conditions, WHC reduces patients’ stigma regarding their care needs
and increases patient activation and well-being, which can increase engagement in supportive services.
Significance: By training a high-value workforce in a patient-centered approach to care that facilitates
engagement in supportive services, our proposed research can reduce homeless Veterans’ reliance on acute
care services, thereby minimizing the financial burden these patients exert on the care system. This proposal
responds to several VA HSR&D Research Priorities including Mental Health, Healthcare Value, Primary Care
Practice, Healthcare Informatics, and Whole Health, as well as VA-related Legislative Priorities (MISSION Act).
Innovation and Impact: A critical innovation of this research is use of data-driven processes (Hot Spotter
Analytics) to better target and tailor care for high-need, homeless Veterans in VHA. Our proposed research is
also innovative in that it seeks to integrate the Analytics with a workforce (PS) and approach to care (WHC)
that are rapidly expanding in primary care services VA-wide. These features of our target intervention are
consistent with the National Academy of Medicine’s recommendations for high-quality care for high-need
patients. Finally, by focusing on the development of personal health goals that are aligned with patients’
priorities and values, WHC is a key innovation to be added to existing VHA services for homeless Veterans.
Specific Aims: The goal of this project is to integrate use of Hot Spotter Analytics with Peer Specialists trained
in Whole Health Coaching (PS-WHC) and evaluate whether this approach reduces homeless Veterans’
frequent use of acute care. Aim 1: Conduct an RCT to test whether receipt of PS-WHC (vs. Enhanced Usual
Care; EUC) predicts (1a) lower acute care utilization, (1b) better health-related outcomes, and whether (1c) the
effects of PS-WHC on 1a and 1b are mediated by increased (i) patient activation and well-being, and (ii)
access to supportive services. Aim 2: Conduct a process evaluation to inform VA's potential widespread
implementation of Hot Spotter Analytics + PS-WHC on PACTs. Aim 3: Conduct a Budget Impact Analysis (BIA)
to determine the impact on total costs of VA care due to implementing PS-WHC.
Methodology: Using a Hybrid Type 1 design at the Palo Alto and Bedford VAs, 220 Veterans on PACT panels
who are (i) on the VA Homeless Registry, and (ii) persistent super-utilizers of acute care will complete a
baseline interview, be randomized to either EUC (usual PACT care + Hot Spotter Analytics and text reminders
of appointments) or EUC plus 12 sessions of PS-WHC over 12 weeks, and be re-interviewed at 3, 6, and 9
months. For Aim 2, the CFIR framework will guide key informant interviews with 7 PACT staff/leaders and 12
patients from each site. For the BIA, we will include only VA costs from VA, Fee Basis care, and Choice care.
Costs will be estimated per patient for all treatment beginning with randomization and continuing for 9 months.
Next Steps/Implementation: Depending on the results, we will work with our VACO partners in the National
Center for Homelessness Among Veterans, the Office of Patient Centered Care & Cultural Transformation, and
the Office of Mental Health & Suicide Prevention to conduct a large multisite implementation trial.
背景:10%的患者占急性护理费用的70%。在这些“超级利用者”中
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Michael Blonigen其他文献
Daniel Michael Blonigen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Michael Blonigen', 18)}}的其他基金
Using Data Analytics and Targeted Whole Health Coaching to Reduce Frequent Utilization of Acute Care among Homeless Veterans
使用数据分析和有针对性的整体健康指导来减少无家可归的退伍军人对紧急护理的频繁使用
- 批准号:
10559486 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Stand Down-Think Before You Drink: An RCT of a Mobile App for Hazardous Drinking with Peer Phone Support
停下来——喝酒前三思:针对危险饮酒的移动应用程序进行随机对照试验,并提供同行电话支持
- 批准号:
10424621 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Using Data Analytics and Targeted Whole Health Coaching to Reduce Frequent Utilization of Acute Care among Homeless Veterans
使用数据分析和有针对性的整体健康指导来减少无家可归的退伍军人对紧急护理的频繁使用
- 批准号:
10312596 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Randomized Controlled Trial of MISSION-CJ for Justice-Involved Homeless Veterans with Co-Occurring Substance Use and Mental Health
MISSION-CJ 针对参与司法的无家可归退伍军人同时发生药物滥用和心理健康的随机对照试验
- 批准号:
10242636 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Evaluating the Adaptability and Implementation Potential of an Innovative Alcohol Intervention for Veterans in Primary Care: Integrating Mobile-based Applications with Peer Support
评估初级保健退伍军人创新酒精干预措施的适应性和实施潜力:将基于移动的应用程序与同伴支持相结合
- 批准号:
9397399 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Improving Treatment Engagement and Outcomes among Justice-involved Veterans
改善参与司法的退伍军人的治疗参与度和结果
- 批准号:
8977107 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Improving Treatment Engagement and Outcomes among Justice-involved Veterans
改善参与司法的退伍军人的治疗参与度和结果
- 批准号:
9759668 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Identifying Innovations for Managing High-Cost Mental Health Patients
确定管理高成本心理健康患者的创新
- 批准号:
8671647 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant