Validating a machine learning model of eye tracking in children with cortical visual impairment (CVI)
验证皮质视觉障碍 (CVI) 儿童眼球追踪的机器学习模型
基本信息
- 批准号:10595052
- 负责人:
- 金额:$ 23.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AblationActive LearningAdoptedAdverse effectsAgeBehaviorBiomedical EngineeringBrainCaliforniaCategoriesCharacteristicsChildChildhoodClassificationClinicClinicalClinical TrialsClinical Trials DesignClinical assessmentsCollaborationsContrast SensitivityCorneaCrowdingDataData AnalysesData ScienceData SetDeveloped CountriesDiseaseElectrophysiology (science)EnrollmentEvaluationEvidence based treatmentExhibitsEyeFoundationsFrequenciesFutureGoalsInternationalInterviewJointsK-Series Research Career ProgramsKnowledgeLaboratoriesLearningLightLongitudinal StudiesLos AngelesMachine LearningMeasuresMentored Patient-Oriented Research Career Development AwardMentorsMethodsNeural Network SimulationNeurodevelopmental DisorderNeurologicOphthalmologyOutcome MeasureParentsPatientsPediatric HospitalsProtocols documentationQuality of Life AssessmentQuality of lifeQuestionnairesResearchResearch PersonnelResolutionSaccadesSamplingSeveritiesTechniquesTechnologyTimeTrainingTranslatingUniversitiesVisionVision TestsVisualVisual AcuityVisual PathwaysVisual SystemVisual evoked cortical potentialVisual impairmentcohortcomorbiditycomputer monitorcortical visual impairmentdeep learningdeep neural networkexperiencegazelarge datasetsmachine learning modelneurodevelopmentnext generationnoveloculomotorprogramsprospectivesexsignal processingsuccesstargeted treatmenttranslational potentialvisual controlvisual dysfunctionvisual stimulusvisual tracking
项目摘要
Project summary
Cortical visual impairment (CVI) is the leading cause of pediatric visual impairment in developed countries. There
is no evidence-based treatment, and design of clinical trials is hampered by the absence of a validated method
of visual assessment that captures the numerous aspects of visual function that are compromised in pediatric
CVI. Our laboratory is investigating the use of eye tracking in children with CVI. During eye tracking, an infrared
camera tracks the pupillary and corneal light reflections while a child watches visual stimuli on a computer
monitor. The eye tracker calculates the direction of eye gaze with high spatial and temporal frequency. Our eye
tracking protocol assesses multiple afferent, efferent, and higher-order visual parameters during a 12-minute
recording session. Our initial data show that eye tracking is reliable and quantifies multiple visual and oculomotor
parameters in children with CVI. Given the large amount of data generated by eye tracking (2,000 data points
per second), higher-level analytics are required. We will validate a machine-learning model of eye tracking in
children with CVI via three Specific Aims. In Aim 1, we will quantify deficits of visual function in pediatric CVI
using eye tracking, strengthening the findings in our preliminary data by inclusion of a well-powered sample. In
Aim 2, we will use machine learning to develop a CVI eye tracking severity score. In Aim 3, we will validate eye
tracking by comparing and contrasting with two other methods of visual assessment in children with CVI, sweep
visual evoked potentials and the CVI Range. Together, these studies will establish eye tracking as a quantitative,
objective, and comprehensive measure of visual function in pediatric CVI. In the R01 application planned at the
end of the K23 award period, we will incorporate the CVI eye tracking severity score as an outcome measure in
a longitudinal study of standard and targeted therapies for CVI. In pursuit of these aims, I will be mentored by a
highly experienced, interdisciplinary, internationally recognized team at Children’s Hospital Los Angeles and
University of Southern California. Under their guidance, I will also pursue a Masters degree in Applied Data
Science and gain experiential learning in electrophysiology. The training acquired during my Career
Development Award will enable me to transition to an independent investigator leading a research program
focused on developing next-generation technologies to interrogate the visual system in children with a variety of
neurodevelopmental disorders.
项目总结
皮质视力损害(CVI)是发达国家儿童视力损害的主要原因。那里
没有循证治疗,临床试验的设计因缺乏有效的方法而受阻
视觉评估,捕捉了儿科患者视觉功能受损的许多方面
CVI。我们的实验室正在研究眼球跟踪技术在CVI儿童中的应用。在眼睛跟踪过程中,红外线
当孩子在电脑上观看视觉刺激时,相机会跟踪瞳孔和角膜的光线反射
监视器。眼睛跟踪器计算眼睛注视的方向,具有很高的空间和时间频率。我们的眼睛
跟踪协议在12分钟内评估多个传入、传出和更高阶视参数
录制会话。我们的初步数据显示,眼球跟踪是可靠的,可以量化多种视觉和眼球运动
CVI患儿的相关参数。考虑到眼睛跟踪产生的大量数据(2,000个数据点
每秒),则需要更高级别的分析。我们将验证眼睛跟踪的机器学习模型
CVI儿童通过三个具体目标。在目标1中,我们将量化儿童CVI的视觉功能缺陷。
使用眼球跟踪,通过包含一个强大的样本来加强我们初步数据中的发现。在……里面
目标2,我们将使用机器学习来开发CVI眼球跟踪严重程度评分。在目标3中,我们将验证眼睛
儿童CVI、SWEEP与其他两种视觉评估方法的追踪比较
视觉诱发电位和CVI范围。总之,这些研究将把眼球跟踪作为一种量化的、
目的、全面测量儿童CVI的视功能。在计划的R01应用程序中
K23奖励期结束后,我们将纳入CVI眼球跟踪严重程度评分,作为
标准和靶向治疗CVI的纵向研究。为了追求这些目标,我将得到一位
洛杉矶儿童医院经验丰富、跨学科、国际公认的团队
南加州大学。在他们的指导下,我还将攻读应用数据硕士学位
科学,并获得电生理学的经验学习。在我的职业生涯中获得的培训
发展奖将使我能够过渡到领导研究项目的独立调查员
专注于开发下一代技术来询问患有各种疾病的儿童的视觉系统
神经发育障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melinda Chang其他文献
Melinda Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melinda Chang', 18)}}的其他基金
Validating a machine learning model of eye tracking in children with cortical visual impairment (CVI)
验证皮质视觉障碍 (CVI) 儿童眼球追踪的机器学习模型
- 批准号:
10425929 - 财政年份:2022
- 资助金额:
$ 23.46万 - 项目类别:
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Defending Cyberspace through Active Learning
CyberCorps 服务奖学金:通过主动学习捍卫网络空间
- 批准号:
2336586 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Continuing Grant
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
- 批准号:
2337029 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315697 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315696 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
- 批准号:
2411535 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315698 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315701 - 财政年份:2024
- 资助金额:
$ 23.46万 - 项目类别:
Standard Grant