Improve Statistical Methods for Profiling of Healthcare Providers

改进医疗保健提供者概况分析的统计方法

基本信息

  • 批准号:
    10595024
  • 负责人:
  • 金额:
    $ 32.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Healthcare provider profiling is of nationwide importance. In order to identify extreme (poor or excellent) performance and to intervene as necessary, outcomes of patients associated with specific healthcare providers are routinely monitored by both government and private payers. This monitoring can help patients make more informed decisions, and can also aid consumers, stakeholders, and payers in identifying providers where improvement may be needed, and even closing or fining those with extremely poor outcomes. Our endeavor is motivated by the study of end-stage renal disease (ESRD), which represents 7.2% of the entire Medicare budget and is of interest due to its heavy burden on patients, families, and the healthcare system. Existing profiling approaches for analyzing large-scale ESRD registry data assume the risk adjustment is perfect and the between-provider variation is entirely due to the quality of care, which is often invalid. As a result, these methods disproportionately identify larger providers, although they need not be “extreme.'' To address this problem, Aim 1 develops an individualized empirical null approach for profiling healthcare providers to account for the unexplained between-provider variation due to imperfect risk adjustment. The national dialysis data contains more than 3,000 comorbidities from over 2,000,000 patients who are treated from more than 7,000 facilities. The goal is to select important comorbidity indexes for risk adjustment of provider profiling. However, the use of large-scale databases introduces computational difficulties, particularly when the event of interest is recurrent, and the numbers of sample size and the dimension of parameters are large. Traditional methods that perform well for moderate sample sizes and low-dimensional data do not scale to such massive data. Another challenging aspect of the national dialysis dataset is that patient information is updated sequentially. How to integrate streaming recurrent event data adds another level of difficulty. In view of these difficulties, Aim 2 proposes a nested divide-and-conquer-based boosting procedure for high-dimensional variable selection with large-scale clustered recurrent event data. The proposed procedure is further combined with a model updating procedure based on the time-dependent Kullback-Leibler discrimination information to integrate streaming recurrent event data. Finally, the COVID-19 pandemic has dramatically changed how healthcare care is delivered, and statisticians have an important role to play in supporting providers and patients through this evolution. Aim 3 proposes a latent illness-death model to account for temporal and geospatial variation of COVID prevalence in the provider profiling. This analysis is needed to evaluate provider performance more accurately, to help physicians focus on groups of patients with excess risk, and to aid providers in determining corrective actions to improve their performance. The research in Aim 4 is to develop publicly available software to enable the utilization of the proposed approaches.
项目总结 医疗保健提供者概况在全国范围内都很重要。为了识别极端的(差的或优秀的) 与特定医疗保健提供者相关的患者的表现并在必要时进行干预 经常受到政府和私人付款人的监督。这种监测可以帮助患者获得更多 明智的决策,还可以帮助消费者、利益相关者和支付者识别供应商 可能需要改进,甚至关闭或罚款那些结果非常差的公司。 我们的努力是由终末期肾病(ESRD)的研究推动的,ESRD占全球 整个联邦医疗保险预算,由于其对患者、家庭和医疗保健的沉重负担而引起人们的兴趣 系统。现有用于分析大规模ESRD注册表数据的分析方法假定风险调整 是完美的,提供者之间的差异完全是由于护理质量,这往往是无效的。作为一名 结果,这些方法不成比例地识别出较大的供应商,尽管它们不必是“极端的”。至 为了解决这个问题,Aim 1开发了一种个性化的经验归零方法,用于分析医疗保健 提供商需要解释由于风险调整不完善而导致的提供商之间无法解释的差异。 国家透析数据包含来自200多万名患者的3,000多例合并症 从7000多家医疗机构接受治疗。目标是选择重要的共病指标进行风险调整 提供商概况分析。然而,大规模数据库的使用带来了计算困难, 特别是当感兴趣的事件是重复发生的,并且样本大小的数目和维度 参数很大。适用于中等样本量和低维数据的传统方法 数据不会扩展到如此海量的数据。国家透析数据集的另一个挑战方面是 患者信息按顺序更新。如何集成流式循环事件数据又增加了一项 难度级别。针对这些困难,目标2提出了一种基于嵌套分而治之的提升 利用大规模聚集性经常性事件数据进行高维变量选择的程序。这个 所提出的过程进一步与基于时间依赖的模型更新过程相结合 Kullback-Leibler判别信息,以整合流重复事件数据。 最后,新冠肺炎疫情极大地改变了医疗保健的提供方式,统计学家们 在通过这一演变支持提供者和患者方面发挥重要作用。目标3提出了一个 潜伏期疾病-死亡模型解释提供者中COVID流行率的时间和地理空间变化 侧写。需要这种分析来更准确地评估提供者的表现,以帮助医生专注于 关于风险过高的患者群体,并帮助提供者确定纠正措施以改善其 性能。 目标4中的研究是开发公开可用的软件,以便能够利用拟议的 接近了。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Individualized empirical null estimation for exact tests of healthcare quality.
用于精确测试医疗质量的个性化经验零估计。
  • DOI:
    10.1002/sim.10074
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Hartman,Nicholas;He,Kevin
  • 通讯作者:
    He,Kevin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhi Kevin He其他文献

Zhi Kevin He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhi Kevin He', 18)}}的其他基金

Improve Statistical Methods for Profiling of Healthcare Providers
改进医疗保健提供者概况分析的统计方法
  • 批准号:
    10443230
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了