Integrative analysis of high dimensional tissue molecular data to define key biological systems in autoimmune diseases (SBC)
高维组织分子数据综合分析,定义自身免疫性疾病 (SBC) 的关键生物系统
基本信息
- 批准号:10594505
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-18 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAutoimmuneAutoimmune DiseasesAutomobile DrivingB-LymphocytesBlood specimenCD8-Positive T-LymphocytesCellsCellular AssayClinicalClinical DataCollaborationsCommunitiesComplexComputational BiologyComputing MethodologiesConsultationsCuesDataData AnalysesData SetDevelopmentDiseaseEducationEnsureEpigenetic ProcessFibroblastsGeneticGenomicsGoalsHLA-DR AntigensHelper-Inducer T-LymphocyteHistologicHospitalsImmuneIndividualInflammationInflammatoryInternationalLeadershipMediatingMedicineMethodsModalityMolecularNephritisOutcomePathway interactionsPatientsPeripheralPhenotypePositioning AttributeProcessProteinsProteomicsPsoriasisQuality ControlReproducibilityResearchRheumatismRheumatoid ArthritisRheumatologySamplingSjogren&aposs SyndromeStatistical MethodsSystemSystemic Lupus ErythematosusSystems BiologyTechnologyTissue ModelTissue SampleTissuesTrainingTranscriptValidationWomanalgorithm developmentanalytical methodbioinformatics toolbiological systemscomplex datacomputerized toolsdata integrationdata resourceexperiencehigh dimensionalityhuman diseaseinnovationinvestigator trainingmultidimensional datamultimodal datamultimodalitynovelnovel strategiesprogramsskillssuccesstext searchingtooltranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Here we propose a Systems Biology Core (SBC) for the Accelerating Medicines Partnerships in Autoimmune
and Immune-Mediated Diseases (AMP AIM). The AMP AIM will use high dimensional molecular and cellular
assays to define the key cell states, pathways, and molecular components of tissue inflammation and damage
by examining patient tissue and blood samples. Ultimately, we seek to define the components of tissue
inflammation in autoimmune and inflammatory diseases including psoriatic spectrum diseases (PSD),
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjogren’s syndrome (SS), and other related
conditions. AMP RA/SLE initiated this process by querying 106 single cells in inflamed RA synovial and SLE
nephritis tissue samples using multimodal strategies; it defined key cell states in tissue inflammation, including
T peripheral helper T cells (Tph), GZMK+ CD8+ T cells, HLA-DR+THY1+ fibroblasts, and autoimmune-
associated B cells (ABCs). Now, to understand how these and emerging cell-states function and interact to
cause disease, it will be essential to obtain high dimensional data on patient sample data across a spectrum of
diseases and disease sub-phenotypes. These data may capture the cellular states; the spatial localization of
cell states, proteins and transcripts; histological features; and other tissue parameters. A powerful and skilled
team that is able to define strategies to analyze this data, integrate multiple modalities of data, and integrate
results from across a diverse set of diseases and tissues will be essential to the success of this program.
We build from our experience leading the Systems Biology Group within the Accelerating Medicines
Partnerships Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE). We have built a team
that is skilled at analysis of diverse modalities and computational biology. We have specific experience and
expertise in inflammatory diseases. Here we propose to:
(1) Develop Tools and Technology to analyze high dimensional cellular and molecular data. This includes
optimizing existing bioinformatics and computational tools. It also includes developing new
computational and statistical methods to integrate high dimensional data manifestation of disease.
(2) Enable collaboration throughout the network and facilitate systems level analysis. We envision that this
is an integrated activity with the network, where we will devise and ultimately create an integrated
model of tissue inflammation across diseases to define features that drive clinical disease. This will
require the development of new statistical and computational methods. It will also require tight
collaboration within the network including data synchronization, storage, sharing, and clinical data
integration. In addition, we will engage the network by offering consultation, technical support and
training in high dimensional data analysis.
.
项目概要/摘要
在这里,我们提出了一个系统生物学核心(SBC),用于加速自身免疫领域的药物合作
和免疫介导的疾病(AMP AIM)。 AMP AIM 将使用高维分子和细胞
确定组织炎症和损伤的关键细胞状态、途径和分子成分的测定
通过检查患者组织和血液样本。最终,我们寻求定义组织的组成部分
自身免疫性炎症和炎症性疾病,包括银屑病谱系疾病 (PSD),
类风湿性关节炎(RA)、系统性红斑狼疮(SLE)、干燥综合征(SS)和其他相关疾病
状况。 AMP RA/SLE 通过查询发炎的 RA 滑膜和 SLE 中的 106 个单细胞来启动此过程
使用多模式策略获取肾炎组织样本;它定义了组织炎症中的关键细胞状态,包括
T 外周辅助 T 细胞 (Tph)、GZMK+ CD8+ T 细胞、HLA-DR+THY1+ 成纤维细胞和自身免疫细胞
相关 B 细胞 (ABC)。现在,了解这些和新兴的细胞状态如何发挥作用并相互作用
导致疾病,因此必须获得一系列患者样本数据的高维数据
疾病和疾病亚表型。这些数据可以捕获细胞状态;的空间定位
细胞状态、蛋白质和转录本;组织学特征;和其他组织参数。一个强大而熟练的
能够定义策略来分析这些数据、集成多种数据模式并集成
来自不同疾病和组织的结果对于该计划的成功至关重要。
我们借鉴了在加速药物领域领导系统生物学小组的经验
类风湿关节炎和系统性红斑狼疮 (AMP RA/SLE) 的合作伙伴关系。我们已经建立了一个团队
擅长分析多种模式和计算生物学。我们有具体的经验和
炎症性疾病方面的专业知识。在此我们建议:
(1) 开发分析高维细胞和分子数据的工具和技术。这包括
优化现有的生物信息学和计算工具。它还包括开发新的
整合疾病高维数据表现的计算和统计方法。
(2) 实现整个网络的协作并促进系统级分析。我们设想这
是一项与网络的集成活动,我们将设计并最终创建一个集成的
跨疾病的组织炎症模型,以确定驱动临床疾病的特征。这将
需要开发新的统计和计算方法。还需要严密的
网络内的协作,包括数据同步、存储、共享和临床数据
一体化。此外,我们将通过提供咨询、技术支持和
高维数据分析培训。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soumya Raychaudhuri其他文献
Soumya Raychaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soumya Raychaudhuri', 18)}}的其他基金
Integrative analysis of high dimensional tissue molecular data to define key biological systems in autoimmune diseases (SBC)
高维组织分子数据综合分析,定义自身免疫性疾病 (SBC) 的关键生物系统
- 批准号:
10450354 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Integrative analysis of high dimensional tissue molecular data to define key biological systems in autoimmune diseases (SBC)
高维组织分子数据综合分析,定义自身免疫性疾病 (SBC) 的关键生物系统
- 批准号:
10687728 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Defining the influence of RA genetic susceptibility factors on T cell antigen specificity and functional state
定义 RA 遗传易感因素对 T 细胞抗原特异性和功能状态的影响
- 批准号:
10210806 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Defining the influence of RA genetic susceptibility factors on T cell antigen specificity and functional state
定义 RA 遗传易感因素对 T 细胞抗原特异性和功能状态的影响
- 批准号:
10414964 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Discovery and Functional Impact of Common and Rare Variants in RA
RA 常见和罕见变异的发现及其功能影响
- 批准号:
8712363 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Discovery and Functional Impact of Common and Rare Variants in RA
RA 常见和罕见变异的发现及其功能影响
- 批准号:
8576206 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Discovery and Functional Impact of Common and Rare Variants in RA
RA 常见和罕见变异的发现及其功能影响
- 批准号:
9478546 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant














{{item.name}}会员




