Metal-binding Isosteres for Influenza Endonuclease Inhibitors and Beyond
流感核酸内切酶抑制剂及其他药物的金属结合等排体
基本信息
- 批准号:10594905
- 负责人:
- 金额:$ 37.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcidityActive SitesAddressAffinityAffinity ChromatographyBacterial InfectionsBindingBiochemicalBiological AssayBiological ProcessBiotechnologyCarboxylic AcidsCase StudyCellsCharacteristicsChemicalsClinicalCollaborationsCytoprotectionDataDevelopmentDisclosureDiseaseEnzymesEquipment and supply inventoriesFundingHIV/AIDSHealthHumanHypertensionIn VitroInfluenzaIonsLaboratoriesLegal patentLengthLibrariesMalignant NeoplasmsMammalian CellMeasuresMentorsMetal Ion BindingMetalsMethodsModelingMulti-Drug ResistanceN-terminalNaturePharmaceutical ChemistryPharmaceutical PreparationsPlayPolymerasePrevalenceProliferatingPropertyProteinsPublicationsResearchRoleTherapeuticTherapeutic UsesTranslationsViralViral PhysiologyVirusVirus Diseasescellular targetingclinically relevantdesigndrug developmentdrug discoveryendonucleaseexperimental studyfluflu activityfunctional grouphuman diseaseimprovedin vitro activityinfluenzavirusinhibitorinnovationinsightlipophilicitymetalloenzymemeterpharmacophoreprogramsscaffoldskillssmall moleculesmall molecule inhibitorsmall molecule therapeuticssymposiumuptake
项目摘要
PROJECT SUMMARY/ABSTRACT
This research program is focused on developing new strategies for the discovery of metalloenzyme
inhibitors. Metalloenzymes are essential to numerous biological processes and are relevant to treating
diseases, including cancer, bacterial/viral infections, hypertension, and others. Despite the prevalence of
metalloenzymes (>40% of all enzymes are metalloenzymes) and their critical role in disease proliferation,
the development of new metalloenzyme inhibitors is extremely underexplored. The PI (Cohen) has
developed a research program that combines the principles of bioinorganic with medicinal chemistry and is
widely recognized as one of the few efforts focused on the challenges of metalloenzyme inhibition.
Small molecules that inhibit metalloenzymes utilize a metal-binding pharmacophore (MBP) functional
group to bind to the active site metal ion(s) in the target. In the last project period, a focused MBP fragment
library for use in fragment-based drug discovery (FBDD) against metalloenzymes was assembled. In this
renewal application, the drug-like features of these MBP fragments will be improved by the application of
isostere replacement. This is expected to yield new chemical matter for identifying metalloenzyme
inhibitors, while accessing a wider range of physicochemical properties (e.g., acidity, lipophilicity) in these
scaffolds. These metal-binding isosteres (MBIs) will then be used to improve a class of highly active
inhibitors developed during the last project period against the influenza N-terminal endonuclease domain of
the polymerase acidic protein (PAN). Although active against PAN endonuclease, the poor uptake properties
of these inhibitors have led to suboptimal activity against the virus in cells. MBIs will be used to improve
physicochemical properties, while retaining enzyme-based activity, to produce highly active inhibitors
against the virus in live cells. Finally, to examine the on-target activity and selectivity of metalloenzyme
inhibitors, our MBPs, MBIs, and PAN inhibitors will be examined by Cellular Thermal Shift Assay (CETSA)
and affinity chromatography. These experiments will verify target engagement and evaluate how selectivity
improves as the MBP is developed into a full-length PAN endonuclease inhibitor. Detailed cellular target
engagement data using these methods for metalloenzyme inhibitors is scarce; therefore, these studies will
be valuable for clarifying the selectivity, and hence the clinical prospects, of these therapeutic compounds.
The previous project period generated many collaborations, patent disclosures, conference
proceedings, and ~13 publications. In addition, skilled trainees for the biotechnology workforce were
mentored, and translation of our results into startup companies was achieved. We will continue to nurture
collaborations to discover best- and first-in-class metalloenzyme inhibitors that have the potential to improve
human health. Overall, this research program will continue to play a leading role in identifying small
molecule inhibitors for a challenging target class that has great merit for improving human health.
项目摘要/摘要
这项研究计划致力于开发发现金属酶的新策略。
抑制剂。金属酶在许多生物过程中是必不可少的,并与治疗相关。
疾病,包括癌症、细菌/病毒感染、高血压等。尽管流行的是
金属酶(40%的酶是金属酶)及其在疾病扩散中的关键作用,
新的金属酶抑制剂的开发极不充分。少年派(科恩)有
开发了一项将生物无机物原理与药物化学相结合的研究计划,并
被广泛认为是关注金属酶抑制挑战的为数不多的努力之一。
抑制金属酶的小分子利用金属结合药效团(MBP)功能
与靶标中活性中心金属离子(S)结合的基团。在上一个项目期间,一个重点关注的MBP片段
组装了用于抗金属酶片段药物发现(FBDD)的文库。在这
续期申请,这些MBP片段的药物样特征将通过应用
等张力替换术。这有望产生用于鉴定金属酶的新的化学物质。
缓蚀剂,同时获得更广泛的物理化学性质(例如,酸度、亲脂性)
脚手架。这些金属结合等位体(Mbi)将被用来改进一类高活性的
在上一个项目期间开发的针对流感病毒N末端核酸内切酶结构域的抑制剂
聚合酶酸性蛋白(PAN)。虽然对PAN内切酶有活性,但摄取性能较差
这些抑制剂中的一种导致了在细胞中抗病毒的活性不佳。将使用MBIS来改进
物理化学性质,同时保持基于酶的活性,以产生高活性的抑制剂
在活细胞中对抗病毒。最后,检测金属酶的靶向活性和选择性
我们的Mbps、MBIS和PAN抑制剂将通过细胞热位移分析(CETSA)进行检测。
亲和层析。这些实验将验证目标参与度,并评估选择性
随着MBP发展成为全长PAN内切酶抑制剂而得到改善。详细的蜂窝目标
使用这些方法检测金属酶抑制剂的接合数据很少;因此,这些研究将
对于阐明这些治疗性化合物的选择性和临床前景是有价值的。
之前的项目期产生了许多合作、专利披露、会议
会议记录,以及~13种出版物。此外,生物技术工作人员的熟练实习生
得到了指导,并将我们的成果转化为创业公司。我们将继续培育
合作发现最好和一流的有潜力改进的金属酶抑制剂
人类健康。总体而言,这项研究计划将继续在识别小型
分子抑制剂,用于具有挑战性的目标类别,对改善人类健康具有很大价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SETH M COHEN其他文献
SETH M COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SETH M COHEN', 18)}}的其他基金
Fragment-based Discovery of COMT Inhibitors as a Novel Pharmacotherapy for Alcoholism
基于片段的 COMT 抑制剂的发现作为酒精中毒的新型药物疗法
- 批准号:
10667129 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Metal-binding Isosteres for Influenza Endonuclease Inhibitors and Beyond
流感核酸内切酶抑制剂及其他药物的金属结合等排体
- 批准号:
10113523 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Metal-binding Isosteres for Influenza Endonuclease Inhibitors and Beyond
流感核酸内切酶抑制剂及其他药物的金属结合等排体
- 批准号:
10375483 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Role of CSN in the activity and dynamic cycling of cullin-RING ubiquitin ligases
CSN 在 cullin-RING 泛素连接酶活性和动态循环中的作用
- 批准号:
9188804 - 财政年份:2013
- 资助金额:
$ 37.07万 - 项目类别:
Role of CSN in the activity and dynamic cycling of cullin-RING ubiquitin ligases
CSN 在 cullin-RING 泛素连接酶活性和动态循环中的作用
- 批准号:
8601297 - 财政年份:2013
- 资助金额:
$ 37.07万 - 项目类别:
Role of CSN in the activity and dynamic cycling of cullin-RING ubiquitin ligases
CSN 在 cullin-RING 泛素连接酶活性和动态循环中的作用
- 批准号:
8787083 - 财政年份:2013
- 资助金额:
$ 37.07万 - 项目类别:
Role of CSN in the activity and dynamic cycling of cullin-RING ubiquitin ligases
CSN 在 cullin-RING 泛素连接酶活性和动态循环中的作用
- 批准号:
8438071 - 财政年份:2013
- 资助金额:
$ 37.07万 - 项目类别:
Chelator Fragment Libraries for Optimizing Metal-Ligand Interactions in Metallopr
用于优化 Metallopr 中金属-配体相互作用的螯合剂片段库
- 批准号:
8470190 - 财政年份:2011
- 资助金额:
$ 37.07万 - 项目类别:
Insight and Optimization of Metalloprotein Inhibitors
金属蛋白抑制剂的洞察和优化
- 批准号:
9270574 - 财政年份:2011
- 资助金额:
$ 37.07万 - 项目类别:
Chelator Fragment Libraries for Optimizing Metal-Ligand Interactions in Metallopr
用于优化 Metallopr 中金属-配体相互作用的螯合剂片段库
- 批准号:
8325053 - 财政年份:2011
- 资助金额:
$ 37.07万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




