Biological Image and Video Compression
生物图像和视频压缩
基本信息
- 批准号:105768
- 负责人:
- 金额:$ 63.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Study
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep Render Ltd is an Imperial College spin-out of the Department of Computing. We are a London based AI start-up that is developing the next generation of media compression algorithms. Our proprietary and patented technology is at the forefront of machine learning research. Furthermore, our Biological Image Compression results are state-of-the-art, already providing a 50% efficiency gain over the best previous compression standards.Our vision is to combine the fields of artificial intelligence, statistics and information theory to unlock the fundamental limits of image and video compression. The human eye is the best data compressor known to humanity -- with compression ratios at least 2,000 times better than everything developed to date. Biological Compression approximates the neurological processes of the human eye through a non-linear, learning-based approach, thereby creating a novel class of highly efficient compression algorithms. Moreover, while the traditional compression methods have hit peak-innovation with significantly declining performance gains, Biological Compression technology is only starting.Once Deep Render has completed the project, we will have an image compression codec at least 75% more efficient than the current state-of-the-art. Such an efficiency jump is the most significant inter-generation improvement the compression industry has ever seen. Further, we will have started to roll over these advances to video compression as well.Our target customers are the streaming industry (Netflix, YouTube, BBC, Sky), as well as the cloud-storage industry for images (Facebook, Instagram, Snapchat). Niche markets include VR/AR-streaming (Oculus), ultra-low latency live streaming (video calls, Skype), and all industries with large image/video storage needs such as the medical image processing market (NHS).Our value proposition is easy to understand. By making file sizes 75% smaller, we directly increase the bandwidth supply of the internet by a factor of 4, thus reducing data transport costs and operational overhead. Increasing the bandwidth supply by making file sizes smaller, is magnitudes more cost- and time-efficient than increasing the bandwidth supply through rewiring the globe with progressively more fibre-cables.Deep Render is going to help create a new age in which bandwidth constraints are a problem of the past. We are excitingly looking forward to seeing what amazing products people will build in such a world.
Deep Render Ltd是帝国理工学院计算机系的一个分支。我们是一家位于伦敦的人工智能初创公司,正在开发下一代媒体压缩算法。我们的专有和专利技术处于机器学习研究的最前沿。此外,我们的生物图像压缩结果是最先进的,已经提供了50%的效率增益比以前最好的压缩标准。我们的愿景是联合收割机结合人工智能,统计学和信息理论的领域,以解锁图像和视频压缩的基本限制。人眼是人类已知的最好的数据压缩器-压缩比至少比迄今为止开发的任何东西都好2,000倍。生物压缩通过一种非线性的、基于学习的方法来近似人眼的神经过程,从而创建了一类新型的高效压缩算法。此外,当传统的压缩方法已经达到了顶峰,但性能提升却在显著下降时,生物压缩技术才刚刚起步。一旦Deep Render完成项目,我们将拥有一个比当前最先进的图像压缩编解码器效率至少高75%的图像压缩编解码器。这样的效率跃升是压缩行业有史以来最显著的跨代改进。我们的目标客户是流媒体行业(Netflix、YouTube、BBC、Sky)以及图像云存储行业(Facebook、Instagram、Snapchat)。利基市场包括VR/AR流媒体(Oculus),超低延迟直播流媒体(视频通话,Skype)以及所有具有大型图像/视频存储需求的行业,如医疗图像处理市场(NHS)。我们的价值主张很容易理解。通过将文件大小缩小75%,我们直接将互联网的带宽供应增加了4倍,从而降低了数据传输成本和运营开销。通过减小文件大小来增加带宽供应,比通过用越来越多的光纤电缆重新布线地球仪来增加带宽供应更节省成本和时间。Deep Render将帮助创造一个新时代,在这个时代,带宽限制将成为过去的问题。我们非常期待看到人们在这样一个世界中会创造出什么样的惊人产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Video-Based Fall Detection and Medical Image Denoising Methods
基于视频的跌倒检测和医学图像去噪方法
- 批准号:
2767749 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Studentship
Web-Scale Semantic Image and Video Understanding
网络规模的语义图像和视频理解
- 批准号:
RGPIN-2018-04657 - 财政年份:2022
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Grants Program - Individual
Human Visual Properties based Image/Video Compression Research
基于人类视觉特性的图像/视频压缩研究
- 批准号:
22K17921 - 财政年份:2022
- 资助金额:
$ 63.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Image and Video Signal Processing with Applications
图像和视频信号处理及其应用
- 批准号:
RGPIN-2022-04980 - 财政年份:2022
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Grants Program - Individual
Image and Video Compression Meets Computer Vision
图像和视频压缩与计算机视觉的结合
- 批准号:
RGPIN-2020-04525 - 财政年份:2022
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Grants Program - Individual
An Innovative Video Production Application Featuring Image Recognition, Sentiment Analysis and Real-time Guidance Supporting Users in Making Professional Video While Saving Time and Money
一款创新的视频制作应用程序,具有图像识别、情感分析和实时指导功能,支持用户制作专业视频,同时节省时间和金钱
- 批准号:
10004472 - 财政年份:2021
- 资助金额:
$ 63.5万 - 项目类别:
Collaborative R&D
High-speed video image analyses on actions of sand particles in a water jet obliquely impinging against a solid surface
高速视频图像分析水射流中的沙粒倾斜撞击固体表面的行为
- 批准号:
21H01443 - 财政年份:2021
- 资助金额:
$ 63.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Image and Video Compression Meets Computer Vision
图像和视频压缩与计算机视觉的结合
- 批准号:
RGPIN-2020-04525 - 财政年份:2021
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Grants Program - Individual
Web-Scale Semantic Image and Video Understanding
网络规模的语义图像和视频理解
- 批准号:
RGPIN-2018-04657 - 财政年份:2021
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Grants Program - Individual
Image/video restoration in ill lighting conditions
光照条件不佳时的图像/视频恢复
- 批准号:
517550-2017 - 财政年份:2021
- 资助金额:
$ 63.5万 - 项目类别:
Collaborative Research and Development Grants