HEMATOPOIETIC STEM CELLS--MECHANISMS OF SELF REPLICATION

造血干细胞--自我复制机制

基本信息

项目摘要

The overall aim of this project is to identify extracellular signals and specific genes involved in the maintenance of hematopoietic stem cells (HSC). An important practical goal of these studies is the establishment of conditions that generate HSC in vitro. Major obstacles to progress in this area have been the inability to purify biologically defined subpopulations of HSC, coupled with the difficulties of identifying the expression (or suppression) of genes involved in HSC self-replication, especially given the very small numbers of HSC available for study (typically a few thousand cells of each defined HSC subpopulation). However, our group has recently developed a flow cytometric method that utilizes a sequential Hoechst 33342/Rhodamine 123 approach to purify distinct subpopulations of HSC suitable for investigations at the cellular and molecular levels. Specifically, we plan: a) to define the specific growth conditions [e.g., growth factors, growth inhibitors, adhesion molecules/ligands ("adhesins")] that control the maintenance of "sternness" of long-term repopulating Hoechst 33342/Rhodamine 123-selected HSC in vitro using single cell cultures and analysis of the proliferative potential of HSC daughter cells by recloning in vitro or assaying in vivo using suitable long-term or short-term repopulation assays; b) to define unique genes expressed (or suppressed) by freshly isolated Hoechst 33342/Rhodamine 123-selected HSC subpopulations that can be physically separated and are biologically distinct (based on the short-term versus long-term repopulating ability in vivo of two subpopulations) using a novel polymerase chain reaction-based subtractive cloning method; c) to define unique genes expressed (or suppressed) in vitro by descendant daughter cells generated from long-term repopulating Hoechst 33342/Rhodamine 123-selected HSC exposed to specific growth factors, + /- proliferation inhibitors and/or adhesins.
该项目的总体目标是识别细胞外信号, 维持造血干细胞的特定基因 (HSC)。这些研究的一个重要的实际目标是建立 在体外产生HSC的条件。取得进展的主要障碍 这一地区一直无法净化生物定义 HSC的亚群,再加上识别 参与HSC自我复制的基因的表达(或抑制), 特别是考虑到可供研究的HSC数量非常少, (通常每个限定的HSC亚群的几千个细胞)。 然而,我们的小组最近开发了一种流式细胞术方法, 利用顺序Hoechst 33342/罗丹明123方法纯化 HSC的不同亚群适合在细胞内进行研究, 和分子水平。具体而言,我们计划:a)确定具体的 生长条件[例如,生长因子,生长抑制剂,粘附 分子/配体(“粘附素”)],其控制 Hoechst 33342/罗丹明123-选择的长期再填充的“干性” HSC体外单细胞培养及增殖活性分析 通过体外再克隆或体内测定HSC子细胞的潜力 使用合适的长期或短期再增殖测定; B)确定 新鲜分离的Hoechst表达(或抑制)的独特基因 33342/罗丹明123-选择的HSC亚群,可以物理地 分离,生物学上是不同的(基于短期与 两个亚群的体内长期再增殖能力), 新的基于聚合酶链反应的消减克隆方法; c) 定义后代在体外表达(或抑制)的独特基因 从Hoechst长期繁殖中产生的子细胞 33342/罗丹明123-选择性HSC暴露于特异性生长因子,+ /- 增殖抑制剂和/或粘附素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Hollis Bartelmez其他文献

Stephen Hollis Bartelmez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Hollis Bartelmez', 18)}}的其他基金

Autologous TGFB1 Modified CD34+ Stem Cells for Repair of Diabetic Macular Edema and Macular Ischemia
自体 TGFB1 修饰的 CD34 干细胞用于修复糖尿病黄斑水肿和黄斑缺血
  • 批准号:
    9346796
  • 财政年份:
    2017
  • 资助金额:
    $ 24.74万
  • 项目类别:
Accelerated Repair of Vascular Injury in Diabetes by TGF-beta Modified Stem Cells
TGF-β修饰干细胞加速修复糖尿病血管损伤
  • 批准号:
    7674409
  • 财政年份:
    2009
  • 资助金额:
    $ 24.74万
  • 项目类别:
A Cellular Approach to the Treatment of Diabetic Maculopathy
治疗糖尿病黄斑病的细胞方法
  • 批准号:
    7945315
  • 财政年份:
    2009
  • 资助金额:
    $ 24.74万
  • 项目类别:
Autologous TGF-B-Modified HSC for Repair of Vasodegenerative Diabetic Retinopathy
自体 TGF-B 修饰的 HSC 用于修复血管退行性糖尿病视网膜病变
  • 批准号:
    7745244
  • 财政年份:
    2009
  • 资助金额:
    $ 24.74万
  • 项目类别:
A Cellular Approach to the Treatment of Diabetic Maculopathy
治疗糖尿病黄斑病的细胞方法
  • 批准号:
    7828808
  • 财政年份:
    2009
  • 资助金额:
    $ 24.74万
  • 项目类别:
Progenitor assay to screen proteins/molecules for treatment of type1 diabetes
用于筛选治疗 1 型糖尿病的蛋白质/分子的祖细胞测定
  • 批准号:
    7329854
  • 财政年份:
    2007
  • 资助金额:
    $ 24.74万
  • 项目类别:
ENZYME-COATED URINARY PROSTHESES TO PREVENT ENCRUSTATION
涂有酶的泌尿假体可防止结垢
  • 批准号:
    6765199
  • 财政年份:
    2000
  • 资助金额:
    $ 24.74万
  • 项目类别:
HEMATOPOIETIC STEM CELLS--MECHANISMS OF SELF REPLICATION
造血干细胞--自我复制机制
  • 批准号:
    2016864
  • 财政年份:
    1994
  • 资助金额:
    $ 24.74万
  • 项目类别:
HEMATOPOIETIC STEM CELLS--MECHANISMS OF SELF REPLICATION
造血干细胞--自我复制机制
  • 批准号:
    2518395
  • 财政年份:
    1994
  • 资助金额:
    $ 24.74万
  • 项目类别:
HEMATOPOIETIC STEM CELLS--MECHANISMS OF SELF REPLICATION
造血干细胞--自我复制机制
  • 批准号:
    3249391
  • 财政年份:
    1994
  • 资助金额:
    $ 24.74万
  • 项目类别:

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Continuing Grant
Non-Canonical Roles for Cell-Adhesion Molecules in Presynaptic Assembly
细胞粘附分子在突触前组装中的非典型作用
  • 批准号:
    10751904
  • 财政年份:
    2023
  • 资助金额:
    $ 24.74万
  • 项目类别:
Mechanisms underlying the roles of cell adhesion molecules in the circadian timing system
细胞粘附分子在昼夜节律系统中的作用机制
  • 批准号:
    RGPIN-2020-05262
  • 财政年份:
    2022
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying the roles of cell adhesion molecules in the circadian timing system
细胞粘附分子在昼夜节律系统中的作用机制
  • 批准号:
    RGPIN-2020-05262
  • 财政年份:
    2021
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Discovery Grants Program - Individual
Role of insect olfactory receptors and cell adhesion molecules in circuit organization
昆虫嗅觉受体和细胞粘附分子在电路组织中的作用
  • 批准号:
    2006471
  • 财政年份:
    2020
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Continuing Grant
The role of cadherin cell adhesion molecules in postnatal porcine islet cell function.
钙粘蛋白细胞粘附分子在出生后猪胰岛细胞功能中的作用。
  • 批准号:
    449549
  • 财政年份:
    2020
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Studentship Programs
Elucidation of epithelial-connective tissue interactions mediated by cell adhesion molecules in drug-induced gingival hyperplasia
阐明药物诱导的牙龈增生中细胞粘附分子介导的上皮-结缔组织相互作用
  • 批准号:
    20K23026
  • 财政年份:
    2020
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of novel intervening approaches to cancer progression by comprehensive analyses of interactions between cell adhesion molecules
通过综合分析细胞粘附分子之间的相互作用,开发癌症进展的新干预方法
  • 批准号:
    20K21539
  • 财政年份:
    2020
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of the mechanism of gastric cancer progression and development of innovative therapeutic strategies focusing on cell adhesion molecules
阐明胃癌进展机制并开发以细胞粘附分子为重点的创新治疗策略
  • 批准号:
    20K22831
  • 财政年份:
    2020
  • 资助金额:
    $ 24.74万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了