Developing Microfluidic Lab-on-a-chip Technology Demonstrator for Onsite Lubricating Oil Analysis

开发用于现场润滑油分析的微流控芯片实验室技术演示器

基本信息

项目摘要

The automation of industrial practices to enable greater productivity on production floors is driving the need to replace conventional processes. One of such processes is the use of conventional laboratories to determine the rate of wear and degradation of lubricated production floor machinery. The inefficiency of this process results in reactive maintenance strategies where machinery is maintained only after it has broken-down thus reducing machine availability and productivity. Another is carrying out maintenance when there is no need for this as is the case with preventative maintenance strategies, making maintenance of machinery unnecessarily expensive. Diagnosing early, potential failure of heavy machinery is critical to operations across many industries. For this reason, industrial businesses in 2016 spent £2.01bn on state-of-the-art Oil Condition Monitoring (OCM) techniques. These techniques however, are inefficient, expensive and environmentally unfriendly, for example, costing additional £2.1bn in breakdowns, repairs and downtime losses. RAB-Microfluidics has developed cutting edge microfluidic lab-on-a-chip technology to deliver real-time continuous testing and analysis of lubricating oil. Our "Lab-on-a-Chip" technology delivers oil analysis 1000x faster and 10x cheaper than the current "send the sample to the Laboratory" approach. Analysis of contaminants in engine oil, drive trains etc. is a well-established method of detecting problems. This procedure is called Oil Condition Monitoring. We deliver this onsite, in real time, saving cost and improving equipment reliability. We combine our hardware technology with data computing by developing machine learning capabilities to utilise the data generated from our hardware. This offers customers real-time continuous monitoring, early problem diagnosis, rapid decision making, enhanced efficiency and cost savings. To date we have received various levels of funding to demonstrate the technology with laboratory based prototypes. Nonetheless, this project seeks to build on this and develop a field demonstrator to engage businesses in the manufacturing space in field trials and in the reality of the value our technology can provide. This technology will enable us to solve the hard-to-reach and hard-to-sense challenges of many business in the manufacturing space, using the data we generate intelligently and innovatively to forward model machinery behaviour and immerse businesses in industry 4.0\. We advance evolution of maintenance strategies to secure equipment reliability, increase Overall Equipment Effectiveness (OEE) and by extension productivity on production floors. We extend our capabilities to other industries such as transportation, power generation, maritime etc. helping to transition businesses in these industries to predictive maintenance strategies.
工业实践的自动化使生产车间的生产率更高,这推动了对传统工艺的替代需求。其中一个过程是使用传统的实验室来确定润滑的生产车间机械的磨损和降解速率。这一过程的低效率导致反应性维护策略,其中机械仅在其发生故障后进行维护,从而降低了机器的可用性和生产率。另一个是在不需要的时候进行维护,就像预防性维护策略一样,这使得机器的维护不必要地昂贵。早期诊断重型机械的潜在故障对许多行业的运营至关重要。出于这个原因,工业企业在2016年花费了20.1亿英镑用于最先进的油况监测(OCM)技术。然而,这些技术效率低下,昂贵且不环保,例如,在故障,维修和停机损失方面额外花费21亿英镑。RAB-Microfluidics开发了尖端的微流体芯片实验室技术,可对润滑油进行实时连续测试和分析。我们的“芯片实验室”技术提供的油分析速度比当前的“将样品送到实验室”方法快1000倍,成本低10倍。分析发动机油、传动系统等中的污染物是一种行之有效的检测问题的方法。此程序称为油液状态监测。我们在现场提供真实的时间,节省成本并提高设备可靠性。我们将联合收割机的硬件技术与数据计算相结合,通过开发机器学习功能来利用硬件产生的数据。这为客户提供了实时连续监控、早期问题诊断、快速决策、提高效率和节省成本。到目前为止,我们已经收到了不同程度的资金,以展示基于实验室的原型技术。尽管如此,该项目旨在以此为基础,开发一个现场演示器,让企业在现场试验中参与制造领域,并实现我们的技术可以提供的价值。这项技术将使我们能够解决制造领域许多企业难以触及和难以感知的挑战,使用我们智能和创新地生成的数据来预测机器行为,并使企业沉浸在工业4.0中。我们推进维护策略的发展,以确保设备的可靠性,提高整体设备效率(OEE),并通过生产车间的生产力。我们将我们的能力扩展到其他行业,如运输,发电,海事等,帮助这些行业的企业过渡到预测性维护策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship

相似国自然基金

基于RPA-microfluidic chip技术高效诊断侵袭性真菌病的研究
  • 批准号:
    2020A151501763
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
利用Microfluidic系统研究血流速度对巨核细胞生成血小板的信号调控机制
  • 批准号:
    81770131
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Identification and antimicrobial susceptibility test of Arcobacter in agri-foods using a microfluidic "lab-on-a-chip" device
使用微流体“芯片实验室”装置对农产品中的弓形杆菌进行鉴定和药敏测试
  • 批准号:
    576920-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Alliance Grants
Design and micro/nanofabrication of microfluidic lab-on-a-chip biosensors
微流控芯片实验室生物传感器的设计和微/纳米制造
  • 批准号:
    RGPIN-2021-02815
  • 财政年份:
    2022
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Discovery Grants Program - Individual
Digital Microfluidic Lab-on-a-chip for multiplex detection of biomarkers in exhaled breath
用于呼出气中生物标志物多重检测的数字微流控芯片实验室
  • 批准号:
    2738298
  • 财政年份:
    2022
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
Design and micro/nanofabrication of microfluidic lab-on-a-chip biosensors
微流控芯片实验室生物传感器的设计和微/纳米制造
  • 批准号:
    RGPIN-2021-02815
  • 财政年份:
    2021
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Discovery Grants Program - Individual
Simultaneous, volumetric temperature and velocity field measurements within and around micro-droplets for the analysis and characterization of disperse multiphase flows in microfluidic Lab-on-a-Chip systems
对微液滴内部和周围进行同步体积温度和速度场测量,用于分析和表征微流体芯片实验室系统中的分散多相流
  • 批准号:
    407463169
  • 财政年份:
    2019
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Research Grants
Alleviating the "Sample to Sequence" Bottleneck Using Novel Microfluidic Lab-on-a-Chip Nucleic Acid Extraction Technologies
利用新型微流控芯片实验室核酸提取技术缓解“样本到测序”瓶颈
  • 批准号:
    NE/R012318/2
  • 财政年份:
    2019
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Research Grant
Automated isolation and purification of exosomes from peripheral blood on a microfluidic lab-on-a-chip
在微流体芯片实验室上自动分离和纯化外周血中的外泌体
  • 批准号:
    529109-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Alleviating the "Sample to Sequence" Bottleneck Using Novel Microfluidic Lab-on-a-Chip Nucleic Acid Extraction Technologies
利用新型微流控芯片实验室核酸提取技术缓解“样本到测序”瓶颈
  • 批准号:
    NE/R012318/1
  • 财政年份:
    2018
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Research Grant
Characterization and intervention strategies of Campylobacter jejuni biofilm in a microfluidic "lab-on-a-chip" system
微流体“芯片实验室”系统中空肠弯曲杆菌生物膜的表征和干预策略
  • 批准号:
    RGPIN-2014-05487
  • 财政年份:
    2018
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Discovery Grants Program - Individual
Microfluidic-based automated lab-on-a-chip cell manipulation
基于微流控的自动化芯片实验室细胞操作
  • 批准号:
    2007132
  • 财政年份:
    2017
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了