INACTIVATION GATING OF SODIUM CHANNELS
钠通道的失活门控
基本信息
- 批准号:2378807
- 负责人:
- 金额:$ 26.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-04-09 至 1999-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sodium channels underlie the rapid depolarization of action potentials in
most excitable cells and are involved in nervous conduction, voluntary
muscle contraction, cardiac excitation-contraction coupling, as well as ion
channel linked muscle diseases. They serve as receptors for cardiac
antiarrhythmic agents, agents used to intervene in episodes of skeletal
muscle derived periodic paralysis, as well as anticonvulsant agents. Thus,
these important excitability proteins are essential to normal physiological
behavior and are important targets for therapeutic intervention. There is
considerable evidence for an inter-dependence between Na+ channel gating
and channel block by local anesthetic-like agents. However at present
little is known about the molecular determinants of channel gating and
pharmacology. The long term aims of this proposal are to determine the
role of the two principal protein subunits of human Na+ channel (alpha and
beta1 subunits) and how their interactions modulate channel gating and
pharmacology. Specific regions of the Na= channel (amino acid domains)
will be manipulated through protein engineering and recombinant DNA methods
with the goal of identifying their role in channel gating (opening and
inactivation), interactions with the beta1 subunit, and in drug binding.
The methods include patch clamp and high speed cut-open oocyte voltage
clamp of channels expressed in Xenopus oocytes or in mammalian cells.
A major strategy will be to capitalize on the natural functional and
structural diversity of distinct Na+ channels to guide experiments. Three
distinct human Na+ channels will be studied; the human cardiac Na+ channel,
hH1; the human skeletal muscle Na+ channel, hSkm1; and a newly identified
channel cloned from human ventricle, hNav2.1. One rationale for using
these channels is that although highly conserved, functional differences
combined with sequence differences provide clues for identifying and
manipulating important domains in the protein.
The need to understand state dependent drug block and channel gating mode
changes is fundamental. The Na+ channel is the simplest system to begin
these investigations at the molecular level. It offers significant
advantages for successful protein structure-function studies. Ion channels
have a functional signature (the single channel current) that can be
measured with excellent, and functionally relevant temporal resolution at
the level of a single protein molecule. The results will improve
understanding of the function of these newly identified human proteins and
will help identify protein domains involved with channel gating and binding
of therapeutically relevant pharmacological agents.
钠离子通道是脑内动作电位快速去极化的基础
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL B. BENNETT其他文献
PAUL B. BENNETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL B. BENNETT', 18)}}的其他基金
MOLECULAR BIOPHYSICS OF POTASSIUM CHANNEL INACTIVATIONS
钾通道失活的分子生物物理学
- 批准号:
6494836 - 财政年份:2001
- 资助金额:
$ 26.76万 - 项目类别:
MOLECULAR BIOPHYSICS OF POTASSIUM CHANNEL INACTIVATIONS
钾通道失活的分子生物物理学
- 批准号:
6355575 - 财政年份:2000
- 资助金额:
$ 26.76万 - 项目类别:
MOLECULAR BIOPHYSICS OF POTASSIUM CHANNEL INACTIVATIONS
钾通道失活的分子生物物理学
- 批准号:
6202319 - 财政年份:1999
- 资助金额:
$ 26.76万 - 项目类别:
MOLECULAR BIOPHYSICS OF POTASSIUM CHANNEL INACTIVATIONS
钾通道失活的分子生物物理学
- 批准号:
6110083 - 财政年份:1998
- 资助金额:
$ 26.76万 - 项目类别:
MOLECULAR BIOPHYSICS OF POTASSIUM CHANNEL INACTIVATIONS
钾通道失活的分子生物物理学
- 批准号:
6242134 - 财政年份:1997
- 资助金额:
$ 26.76万 - 项目类别:
相似海外基金
Non-canonical chimeric proteins generated during Adenovirus infection
腺病毒感染期间产生的非典型嵌合蛋白
- 批准号:
10448505 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
Non-canonical chimeric proteins generated during Adenovirus infection
腺病毒感染期间产生的非典型嵌合蛋白
- 批准号:
10312411 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
Increasing efficiency in formation of chimeric proteins
提高嵌合蛋白形成的效率
- 批准号:
561998-2021 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
University Undergraduate Student Research Awards
Decoration and Dimerization of Chimeric Proteins Mediated by Coiled-Coil Interactions
卷曲螺旋相互作用介导的嵌合蛋白的修饰和二聚化
- 批准号:
537306-2018 - 财政年份:2019
- 资助金额:
$ 26.76万 - 项目类别:
Collaborative Research and Development Grants
Exploring the therapeutic potential of chimeric proteins
探索嵌合蛋白的治疗潜力
- 批准号:
1947736 - 财政年份:2017
- 资助金额:
$ 26.76万 - 项目类别:
Studentship
TARGETING PROTEIN INTERACTIONS AND DESIGNING CHIMERIC PROTEINS
靶向蛋白质相互作用并设计嵌合蛋白质
- 批准号:
8364271 - 财政年份:2011
- 资助金额:
$ 26.76万 - 项目类别:
Therapeutic peanut allergen Fc gamma chimeric proteins to treat peanut allergy
用于治疗花生过敏的治疗性花生过敏原 Fc γ 嵌合蛋白
- 批准号:
8444422 - 财政年份:2010
- 资助金额:
$ 26.76万 - 项目类别:
Cat allergen-human Fc-gamma1 chimeric proteins to treat cat allergy
猫过敏原-人Fc-gamma1嵌合蛋白治疗猫过敏
- 批准号:
7907314 - 财政年份:2010
- 资助金额:
$ 26.76万 - 项目类别:
TARGETING PROTEIN INTERACTIONS AND DESIGNING CHIMERIC PROTEINS
靶向蛋白质相互作用并设计嵌合蛋白质
- 批准号:
8171849 - 财政年份:2010
- 资助金额:
$ 26.76万 - 项目类别:
Therapeutic peanut allergen Fc gamma chimeric proteins to treat peanut allergy
用于治疗花生过敏的治疗性花生过敏原 Fc γ 嵌合蛋白
- 批准号:
8313432 - 财政年份:2010
- 资助金额:
$ 26.76万 - 项目类别:














{{item.name}}会员




