Highly expressive voices for machine video content localisation
用于机器视频内容本地化的高表现力声音
基本信息
- 批准号:73674
- 负责人:
- 金额:$ 43.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Study
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imagine any video available in any language, with both the unique qualities of the original actors' voices, and the unique way in which they delivered their lines, preserved in the new language. This is the ambitious vision that Papercup will make reality by harnessing the latest developments in the world of machine learning.In 2016, Google's Deepmind created the WaveNet vocoder. This was a revolution in speech synthesis. Prior to this, speech synthesis models were either concatenative (meaning that they work by glueing together short audio samples of recorded speech) or modelled methods, which generate speech "from scratch" using a model of how the human speech production system works. Concatenative synthesis typically resulted in more natural sounding voices, but with unnatural flow because the audio samples come from unrelated sections of speech. Modelled methods tended to produce better flow, but the voices sounded robotic. WaveNet is a deep-learning method, trained directly on audio samples, and combines the natural variation of modelled methods with the natural sound of concatenative methods. This development means that speech synthesis could become essentially indistinguishable from human speech.A vocoder (such as WaveNet), however, is not even half the story. You still have to tell it what to say, and how to say it. For a computer to achieve this, we must first recognise what was said in the original video, by whom, and in what way. Papercup exploits the latest developments in deep learning and has developed a patent-pending method for analysing the unique acoustic features of each speaker, and the way in which they delivered their lines. This is encoded by our algorithms using an internal learned representation, which enables the stresses, intonation, and emotion to be transferred across languages, in a manner analogous to the way translation tools translate text from one language to another.In this way, Papercup's approach replicates the unique vocal characteristics of the actors, and replicates their delivery. This has the potential to revolutionise the voiceover translation industry by creating faithful voiceover translations that accurately convey the original content in additional languages, and do so at scale with significantly lower costs than using traditional voiceover translation services with voice-actors.
想象一下,在任何一种语言的视频中,既有原声演员的独特品质,也有他们表达台词的独特方式,都被保留在新的语言中。Papercup将利用机器学习领域的最新发展,将这一雄心勃勃的愿景变为现实。2016年,b谷歌的Deepmind创建了WaveNet声码器。这是语音合成的一次革命。在此之前,语音合成模型要么是串联的(意思是它们通过将录制语音的短音频样本粘合在一起),要么是建模的方法,使用人类语音产生系统如何工作的模型“从零开始”生成语音。连接合成通常会产生更自然的声音,但不自然的流,因为音频样本来自不相关的语音部分。模拟的方法往往会产生更好的心流,但声音听起来像机器人。WaveNet是一种深度学习方法,直接在音频样本上进行训练,并将建模方法的自然变化与连接方法的自然声音相结合。这一发展意味着语音合成可以从本质上与人类语言无法区分。然而,声码器(如WaveNet)还不是故事的一半。你还得告诉它该说什么,怎么说。要让计算机实现这一点,我们必须首先识别原始视频中说了什么,是谁说的,以什么方式说的。Papercup利用了深度学习的最新发展,并开发了一种正在申请专利的方法,用于分析每个扬声器的独特声学特征,以及他们传递台词的方式。这是由我们的算法使用内部学习表示进行编码的,这使得重音,语调和情感能够跨语言传递,类似于翻译工具将文本从一种语言翻译成另一种语言的方式。通过这种方式,Papercup的方法复制了演员独特的声音特征,并复制了他们的表演。这有可能通过创建忠实的画外音翻译,以其他语言准确传达原始内容,从而彻底改变画外音翻译行业,并且与使用带有配音演员的传统画外音翻译服务相比,这样做的成本要低得多。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 43.61万 - 项目类别:
Studentship
相似国自然基金
脑梗塞运动性失语后语言功能恢复机制的fMRI功能连接研究
- 批准号:30700193
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 43.61万 - 项目类别:
Standard Grant
Designing an Expressive Relational Robotic Memory System with Long-Term Capabilities
设计具有长期能力的表达关系机器人记忆系统
- 批准号:
23K19984 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of skill evaluation models for systematic learning in Expressive Activity and Dance classes
开发表达活动和舞蹈课程系统学习的技能评估模型
- 批准号:
23K02358 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EMERGE: Early Markers of Expressive and Receptive (language) Growth in Ethnically diverse autistic toddlers
出现:种族多元化自闭症幼儿表达和接受(语言)成长的早期标志
- 批准号:
10862026 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Development and Initial Trial of Brief Interventions to Help Parents of Stigmatized Youth Reduce Distress and Strengthen Attachment
制定和初步试验简短干预措施,帮助受侮辱青少年的父母减轻痛苦并加强依恋
- 批准号:
10741051 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effects of expressive writing following traumatic childbirth
创伤性分娩后表达性写作的影响
- 批准号:
10592883 - 财政年份:2023
- 资助金额:
$ 43.61万 - 项目类别:
Expressive data augmentation in deep learning
深度学习中的富有表现力的数据增强
- 批准号:
RGPIN-2022-04651 - 财政年份:2022
- 资助金额:
$ 43.61万 - 项目类别:
Discovery Grants Program - Individual
Writing to Heal: Developing an Internet-Based Cognitive-Behavioral Writing Intervention for Alzheimer’s Disease Spousal Caregivers
写作治愈:为阿尔茨海默病配偶照顾者开发基于互联网的认知行为写作干预
- 批准号:
10449918 - 财政年份:2022
- 资助金额:
$ 43.61万 - 项目类别:














{{item.name}}会员




