STATISTICAL ANALYSIS OF EVENT RELATED POTENTIALS

事件相关潜力的统计分析

基本信息

  • 批准号:
    2609467
  • 负责人:
  • 金额:
    $ 10.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-12-01 至 1999-11-30
  • 项目状态:
    已结题

项目摘要

The millisecond time resolution of event-related potentials (ERPs) gives them a unique advantage in studying brain function, but ERP research is seriously limited by the lack of statistical methods to address the complexity and variability of ERP data. In this project, we will develop a new statistical approach to decomposition of ERP waveforms, analysis of the sources of variability, and estimation of the effects of experimental conditions and disease states. We will evaluate the new methods using simulated ERPs and many animal and human ERP data sets, including ERPs acquired from schizophrenic and stroke patients who also were studied using structural magnetic resonance imaging (MRI). The new statistical methods will combine time series modeling using the wavelet transform with nonlinear mixed effects models. Wavelet analysis decomposes ERPs by time and frequency. We have already validated our wavelet models in applications to simulated data, cat auditory evoked potentials, and human P300 potentials. Wavelet analysis separated superimposed components, yielding realistic condition effects and topographies, even in difficult cases in which principal components analysis failed. Our nonlinear mixed effects models will provide a parsimonious representation of the variability among individuals (human subjects or experimental animals) and single trials (responses to single stimulus presentations). They will yield valid significance tests and confidence intervals, extending familiar linear statistical procedures to complicated nonlinear time series. The specific aims of this project are to develop, evaluate, and apply the following statistical methods. 1. The Single Channel Wavelet Model will separate superimposed components in single channel average ERPs, and yield significance tests for condition effects on the amplitude and latency of each component. 2. The Topographic Wavelet Model will extend the single channel wavelet model to multichannel data, and provide estimated of the topography of each component. Regularization of the topography will allow analysis of ERPs from dense electrode arrays. 3. The Trial-Specific Wavelet Model will extend the single channel wavelet model to include both inter-individual and inter-trial variability, allowing estimation of the relationships among ERP components and between ERP components and trial-specific variables such as reaction time and subjective intensity.
事件相关电位(ERPs)的毫秒时间分辨率给出

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JONATHAN A RAZ其他文献

JONATHAN A RAZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JONATHAN A RAZ', 18)}}的其他基金

STATISTICAL ANALYSIS OF EVENT RELATED POTENTIALS
事件相关潜力的统计分析
  • 批准号:
    2034059
  • 财政年份:
    1994
  • 资助金额:
    $ 10.72万
  • 项目类别:

相似海外基金

A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
  • 批准号:
    10706026
  • 财政年份:
    2023
  • 资助金额:
    $ 10.72万
  • 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
  • 批准号:
    10746499
  • 财政年份:
    2023
  • 资助金额:
    $ 10.72万
  • 项目类别:
International Conference on Cognitive Computational Neuroscience, 2023
认知计算神经科学国际会议,2023
  • 批准号:
    BB/X018350/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.72万
  • 项目类别:
    Research Grant
Undergraduate and Graduate Training in Computational Neuroscience and Data Analysis
计算神经科学和数据分析的本科生和研究生培训
  • 批准号:
    10879351
  • 财政年份:
    2023
  • 资助金额:
    $ 10.72万
  • 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
  • 批准号:
    10879289
  • 财政年份:
    2023
  • 资助金额:
    $ 10.72万
  • 项目类别:
Undergraduate and Graduate Training in Computational Neuroscience and Data Analysis
计算神经科学和数据分析的本科生和研究生培训
  • 批准号:
    10746527
  • 财政年份:
    2023
  • 资助金额:
    $ 10.72万
  • 项目类别:
Computational Neuroscience
计算神经科学
  • 批准号:
    CRC-2018-00162
  • 财政年份:
    2022
  • 资助金额:
    $ 10.72万
  • 项目类别:
    Canada Research Chairs
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
  • 批准号:
    2236749
  • 财政年份:
    2022
  • 资助金额:
    $ 10.72万
  • 项目类别:
    Standard Grant
Decoding sleeping brain activity: Integrating experiments and computational neuroscience to elucidate the cognitive benefit of sleep
解码睡眠大脑活动:结合实验和计算神经科学来阐明睡眠的认知益处
  • 批准号:
    RGPIN-2020-06342
  • 财政年份:
    2022
  • 资助金额:
    $ 10.72万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Neuroscience and Cognitive Neuroimaging
计算神经科学和认知神经影像
  • 批准号:
    CRC-2018-00174
  • 财政年份:
    2022
  • 资助金额:
    $ 10.72万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了