PATTERN MATCHING IN SEQUENCE & STRUCTURE
序列模式匹配
基本信息
- 批准号:6282926
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 1999-04-14
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Identification of protein families and the sequence motifs is
increasingly important as sequence information from the Human Genome
Project begins to be available. In earlier work supported by this
award, we developed a technique for calculating sequence based motif
descriptions or evolutionary profiles (EP). Briefly, this method fits
an explicit evolutionary model to each aligned position in a group of
aligned sequences. This model describes the best evolutionary
distance for each of the twenty amino acid residues. A finite mixture
model is then calculated in which each of the twenty possible
ancestral residues is weighted by its probability of giving rise to
the observed distribution at the given evolutionary distance. In
continuing work this year we are using the EP method to construct
models for the entire family of serine/threonine and tyrosine kinases.
This project involves the construction of multiple alignments for each
of the five major kinase families and 55 subfamilies, and the
subsequent generation of EP. EP are effective description/classifiers
for protein families, and the kinase profiles will be used to classify
novel kinases and provide multiple sequence alignments for the Protein
Kinase Resource at SDSC. Continual improvements to profile analysis
methods are resulting from this "testbed" use of the software. Based
on experience from the last year we have implemented a new and more
flexible server for pattern recognition. This server, SeqWeb, is
designed to support multiple application in a variety of modes of
interaction. Providing end-user applications via the internet poses a
variety of difficulties. While some applications can be completed in
short periods of time, and thus are good candidates for providing
services via an interactive web page, others require minutes or hours
to finish and must therefore employ a different interactive mode.
Furthermore, many applications require inputs from other programs, or
provide inputs to other programs. For a traditional interactive
server, this requires frequent copying of data to and from the server;
each step is error prone and increases the chance of errors. The
SeqWeb server has been designed to address many of these issues.
Temporary file storage is provided to facilitate the use of a series
of programs. Local file storage also allows the system to more
closely control the format of files, and obviates many tedious format
conversions and errors introduced by file transfers. This also
provides for a drop-off and pick-up interaction for analyses that
require more than a few minutes. In addition, SeqWeb provides for the
return of results by web pages (traditional mode) and by email
(similarly to the MEME/MAST server). These three modes of interaction
provide greatly enhance flexibility in provided access to
applications. The current version of SeqWeb implements a series of
programs for use with the evolutionary profile method described above:
specifically, multiple sequence alignment, sequence weighting, profile
creation, profile database searching (using Bioccelerator), and
alignment of sequences and profiles. SeqWeb also provides ac cess to
databases available locally, and tools for the custom display of
alignments. In the next year SeqWeb will be extended to include the
MEME and MAST programs developed in collaboration with NBCR, and its
functionality extended by the addition of other display and analysis
functions.
鉴定蛋白质家族和序列基序
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL GRIBSKOV其他文献
MICHAEL GRIBSKOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL GRIBSKOV', 18)}}的其他基金
DATA INTEGRATION & ANALYTIC TOOLS FOR MOLECULAR SEQUENCES
数据整合
- 批准号:
7182012 - 财政年份:2005
- 资助金额:
$ 10.28万 - 项目类别:
DATA INTEGRATION & ANALYTIC TOOLS FOR MOLECULAR SEQUENCES
数据整合
- 批准号:
6975433 - 财政年份:2004
- 资助金额:
$ 10.28万 - 项目类别:
ISMB Conference Funding for US Students and Scientists
ISMB 为美国学生和科学家提供会议资助
- 批准号:
6520581 - 财政年份:2001
- 资助金额:
$ 10.28万 - 项目类别:
ISMB Conference Funding for US Students and Scientists
ISMB 为美国学生和科学家提供会议资助
- 批准号:
6607118 - 财政年份:2001
- 资助金额:
$ 10.28万 - 项目类别:
ISMB Conference Funding for US Students and Scientists
ISMB 为美国学生和科学家提供会议资助
- 批准号:
6405887 - 财政年份:2001
- 资助金额:
$ 10.28万 - 项目类别:
MACROMOLECULAR PATTERN RECOGNITION & ONLINE ACCESS TO MOLEC BIOL TOOLS: DNA SEQ
大分子模式识别
- 批准号:
6469053 - 财政年份:2001
- 资助金额:
$ 10.28万 - 项目类别:
MACROMOLECULAR PATTERN RECOGNITION & ONLINE ACCESS TO MOLEC BIOL TOOLS: DNA SEQ
大分子模式识别
- 批准号:
6324793 - 财政年份:2000
- 资助金额:
$ 10.28万 - 项目类别:
MACROMOLECULAR PATTERN RECOGNITION & ONLINE ACCESS TO MOLEC BIOL TOOLS: DNA SEQ
大分子模式识别
- 批准号:
6122925 - 财政年份:1999
- 资助金额:
$ 10.28万 - 项目类别:
相似海外基金
Simulating chemical reactions on quantum computers
在量子计算机上模拟化学反应
- 批准号:
FT230100653 - 财政年份:2024
- 资助金额:
$ 10.28万 - 项目类别:
ARC Future Fellowships
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
Superconducting Circuits for Error-Resilient Quantum Computers
用于容错量子计算机的超导电路
- 批准号:
DE240101033 - 财政年份:2024
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Early Career Researcher Award
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
- 批准号:
24K08336 - 财政年份:2024
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Birmingham City University and Minster Micro Computers Limited KTP 22_23 R2
伯明翰城市大学和明斯特微型计算机有限公司 KTP 22_23 R2
- 批准号:
10039149 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Knowledge Transfer Partnership
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Continuing Grant
Travel: 25th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS) 2023
旅行:2023 年第 25 届国际 ACM SIGACCESS 计算机和辅助功能会议 (ASSETS)
- 批准号:
2401908 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Standard Grant
FuSe-TG: Co-designing Novel Memristor Heterostructures for Brain Inspired Computers
FuSe-TG:为类脑计算机共同设计新型忆阻器异质结构
- 批准号:
2235474 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Standard Grant
Singing voice synthesis that can form ensemble with humans and computers
人机合奏的歌声合成
- 批准号:
23K18474 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)