TRUSS: Titanium Reinforced Ultra Strong Structures

桁架:钛增强超强结构

基本信息

  • 批准号:
    88107
  • 负责人:
  • 金额:
    $ 7.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The public concern for the environment has increased steadily over recent years and has become a major concern to governments world-wide. The UK has recognised the need to act on greenhouse gas emissions for many years though international treaties as well as national programmes and legislation. COVID-19 has not diminished the desire for a greener and cleaner future, with increased desire to ensure that the investment in recovery from the COVID-19 pandemic should wherever possible focus on cleaner technologies for the future and especially technology where the UK can compete globally or take a world leading position.Civil aircraft are already being developed to be cleaner and lower emissions through lighter aircraft, more efficient gas turbines, better flight rules and improved aerodynamics. However there is a limit to the efficiency improvements that can be achieved with the conventional tube and wing aircraft design. Therefore engineers re looking at blended wing aircraft which are more aerodynamic and therefore efficient. Blended wing aircraft will require new designs and structures as the tubular fuselage is structurally very efficient.The most efficient blended wing structures rely on a truss structure made up interconnecting thin tubes with a light weight materials as skin. These tubular structures need to be very mass efficient, easily assembled to make very large structures and capable of long service life as inspection, repair and replacements will be very challenging once the aircraft is in service.Conventional metals are still relatively heavy compared to light carbon-fibre composites (CFRP), however this can be expensive to produce and can present challenges when joining in large structures due ot the need for adhesively bonded joints and open-assembly curing. The nodes need to be metallic with sufficient interface area for laid transfer between CFRP struts. These can offer relatively poor compression strength versuses tensile, leading to bulkier struts or truss designs to minimise compression loading.TISICS has developed an innovative solution for very light space system needs. Ceramic fibre reinforced aluminium or titanium exceed the tensile and compression strength and stiffness of aerospace metals and the compression strength of CFRP. When combined with integral diffusion bonded joint nodes, the struts provide greater mass efficient than CFRP. The integral metal nodes can be welded to adjacent struts to enable large wing and fuselage structures in an aircraft assembly environment through robotic welding.This provides a high integrity, long service life, low mass, truss structure solution for future blended wing aircraft. The UK is the only commercial producer of this technology in Europe.This project will develop methods to build multi-strut cells and to join struts into larger structures. Demonstrating this will enable faster integration into blended-wing development projects.
近年来,公众对环境的关注稳步增加,并已成为世界各国政府关注的主要问题。多年来,英国通过国际条约以及国家计划和立法认识到对温室气体排放采取行动的必要性。COVID-19并没有减少人们对更绿色、更清洁未来的渴望,人们更希望确保从COVID-19大流行中恢复的投资尽可能集中在未来更清洁的技术上,特别是那些英国可以在全球竞争或处于世界领先地位的技术。民用飞机已经通过更轻的飞机、更高效的燃气轮机、更好的飞行规则和改进的空气动力学,开发出更清洁、更低排放的飞机。然而,利用传统的管翼飞机设计,效率的提高是有限的。因此,工程师们正在研究混合翼飞机,它更符合空气动力学,因此效率更高。混合翼飞机将需要新的设计和结构,因为管状机身在结构上非常高效。最有效的混合机翼结构依赖于一个桁架结构,该结构由相互连接的细管和轻质材料作为表皮组成。这些管状结构需要非常有效的质量,容易组装成非常大的结构,并且能够长使用寿命,因为一旦飞机投入使用,检查,维修和更换将非常具有挑战性。与轻质碳纤维复合材料(CFRP)相比,传统金属仍然相对较重,但生产成本高,并且由于需要粘合接头和开放式装配固化,在连接大型结构时可能会带来挑战。节点需要是金属的,有足够的界面面积用于CFRP支撑之间的铺设传递。这些可以提供相对较差的抗压强度与拉伸,导致较大的支柱或桁架设计,以尽量减少压缩载荷。TISICS为非常轻的空间系统需求开发了一种创新的解决方案。陶瓷纤维增强铝或钛超过了航空航天金属的拉伸和压缩强度和刚度以及CFRP的压缩强度。当与整体扩散连接节点结合时,支撑比CFRP具有更高的质量效率。整体金属节点可以焊接到相邻的支柱上,从而在飞机装配环境中通过机器人焊接实现大型机翼和机身结构。这为未来的混合翼飞机提供了高完整性、长使用寿命、低质量的桁架结构解决方案。英国是欧洲唯一的这种技术的商业生产国。该项目将开发建造多支柱单元和将支柱连接成更大结构的方法。证明这一点可以更快地集成到混合翼开发项目中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
DISTOPIA - Distorting the Aerospace Manufacturing Boundaries: Operational Integration of Autonomy on Titanium
DISTOPIA - 扭曲航空航天制造边界:钛合金上的自主运营集成
  • 批准号:
    10086469
  • 财政年份:
    2024
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Collaborative R&D
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
  • 批准号:
    LP210301261
  • 财政年份:
    2024
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Linkage Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
  • 批准号:
    FT230100683
  • 财政年份:
    2024
  • 资助金额:
    $ 7.74万
  • 项目类别:
    ARC Future Fellowships
An innovative UK-based thermoplastic carbon/titanium bicycle frame production process that can reduce lead time by 90% and carbon emissions by 70%
An%20创新%20英国%20热塑性%20碳/钛%20自行车%20框架%20生产%20工艺%20that%20can%20减少%20铅%20时间%20by%2090%%20和%20碳%20排放%20by%2070%
  • 批准号:
    10092387
  • 财政年份:
    2024
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Collaborative R&D
Development of novel metastable beta titanium alloys with ultrahigh strength and large ductility
超高强度大塑性新型亚稳态β钛合金的研制
  • 批准号:
    24K08018
  • 财政年份:
    2024
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hybrid Superplastic Forming of Titanium Components (Hyfotic)
钛部件的混合超塑性成形 (Hyfotic)
  • 批准号:
    10063986
  • 财政年份:
    2023
  • 资助金额:
    $ 7.74万
  • 项目类别:
    BEIS-Funded Programmes
Structural analysis of honeycomb type 3D additive manufacturing titanium artificial bone for implantation with high accuracy
蜂窝式3D增材制造高精度植入钛人工骨结构分析
  • 批准号:
    23K09243
  • 财政年份:
    2023
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Incorporating new dynamic structures in ultrasonic surgical devices enabled by 3D printing titanium.
通过 3D 打印钛将新的动态结构融入超声波手术设备中。
  • 批准号:
    2812613
  • 财政年份:
    2023
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Studentship
The initiation and arrest mechanisms of small internal cracks in very high cycles fatigue regime in titanium alloys
钛合金高周疲劳状态下细小内部裂纹的萌生和阻止机制
  • 批准号:
    22KJ0059
  • 财政年份:
    2023
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了