Predictive Analytics for Covid-19 Recovery
Covid-19 恢复的预测分析
基本信息
- 批准号:93341
- 负责人:
- 金额:$ 17.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reopening the economy and reestablishing social contact are vital to the recovery of the economy and society from Covid-19\. Early reopening for economic stimulus risks having the opposite effect, as repeated restrictions imposed at short notice potentially do more cumulative damage, and for longer, than maintaining initial restrictions -- shops, offices and factories have invested in reopening and social distancing measures and individuals have made commitments on the expectation of being able to fulfil them.It is inevitable that restrictions will need to come and go for the foreseeable future, given that the only readily available metrics for the impact of changes in policy are changes in the Covid-19 R-Factor and reported incidence and mortality. The need is for policy-makers in any sector is to be able to make informed and timely decisions that impact the least number of people in the smallest area for the shortest period of time.In any sector -- government, healthcare, sports and leisure venues, retail malls, factories etc -- decisions are dependent on the quality and range of data available, on its geographical, demographic and sector detail and, crucially, on the ability to integrate multiple sources, identify relevant trends, anticipate what may happen next and make informed choices to continue, relax or reimpose restrictions.This is where the problem arises: data is scattered across diverse sources, is of variable quality, accessibility, timeliness, completeness and accuracy, and curating it to generate effective local or sector insight is slow and labour-intensive, often using platforms that are themselves restrictive and/or expensive to operate.This still only reflects what participants knew to look for -- it does not help surface previously unsuspected relationships that might then influence decision-making. Even then, such relationships need to be validated, but the biggest lag is in inspiration -- thinking to look for particular correlations. The pandemic has given us many examples: the correlation of ethnicity with mortality; the impact of living at altitude with severity or the propensity of Covid-19 patients to develop other conditions following apparent recovery.There we are still simply identifying patterns, trends and relationships and driving specific metrics. All are useful, but prediction is usually by eyeball or simple projection of a trend.Two Worlds is developing an SaaS service based on udu, a next-generation, AI-driven intelligence platform. The outcome is a system customisable to local or sector need and which dynamically integrates specific data sources with the automated discovery of supplementary data.We bring a range of statistical, mathematical and AI approaches to the analysis and presentation of information and to the prediction of trends in data. Our approach enables both the creation of repeatable reporting and prediction and the self-organising discovery of new and potentially relevant patterns and relationships. In doing so, it builds on udu's established market, Two Worlds' prior (and continuing) environmental analytics and a first stage Covid-19 analytical study, now approaching completion. This project enables the project to move from prototype demonstrator (TRL5) to being usable by initial test customers (TRLs 7+).
重新开放经济和重建社会联系对经济和社会从Covid-19中复苏至关重要。为经济刺激而提前重新开放可能会产生相反的效果,因为在短时间内反复实施的限制可能会造成更多的累积损害,而且时间比维持最初的限制更长。办公室和工厂已投资于重新开放和社交距离措施,个人也已做出承诺,期望能够履行这些承诺。在可预见的未来,考虑到政策变化影响的唯一可用指标是COVID-19 R因子和报告的发病率和死亡率的变化。任何部门的政策制定者都需要能够做出明智和及时的决策,在最短的时间内影响最小区域内最少数量的人。在任何部门-政府,医疗保健,体育和休闲场所,零售商场,工厂等-决策都取决于可用数据的质量和范围,地理,人口和部门细节,最重要的是,综合多种来源的能力,确定相关趋势,预测下一步可能发生的情况,并做出明智的选择,继续,放松或重新实施限制。这就是问题所在:数据分散在不同来源,质量、可获得性、及时性、完整性和准确性各不相同,整理数据以产生有效的地方或部门见解的过程缓慢,而且劳动密集,这仍然只反映了参与者知道要寻找什么--它无助于揭示以前未被怀疑的关系,这些关系可能会影响决策。即便如此,这种关系也需要得到验证,但最大的滞后是在灵感方面--思考寻找特定的相关性。这场大流行给了我们很多例子:种族与死亡率的相关性;生活在高海拔地区对严重程度的影响,或者新冠肺炎患者在明显康复后出现其他疾病的倾向。在这些方面,我们仍然只是简单地确定模式、趋势和关系,并推动具体的指标。所有这些都是有用的,但预测通常是通过眼球或简单的趋势预测。Two Worlds正在开发基于udu的SaaS服务,udu是下一代人工智能驱动的智能平台。我们的成果是一个可根据当地或行业需求定制的系统,该系统将特定数据源与自动发现补充数据动态集成。我们带来了一系列统计,数学和人工智能方法来分析和展示信息以及预测数据趋势。我们的方法既可以创建可重复的报告和预测,也可以自组织地发现新的和潜在的相关模式和关系。在这样做的过程中,它建立在udu的既定市场,两个世界的先前(和持续)的环境分析和第一阶段的Covid-19分析研究,现在接近完成。该项目使该项目能够从原型演示器(TRL 5)转移到初始测试客户(TRL 7+)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 17.8万 - 项目类别:
Studentship
相似海外基金
SCC-IRG JST: Multimodal Data Analytics and Integration for Effective COVID-19, Pandemics and Compound Disaster Response and Management
SCC-IRG JST:多模式数据分析和集成,实现有效的 COVID-19、流行病和复合灾害响应和管理
- 批准号:
2301552 - 财政年份:2022
- 资助金额:
$ 17.8万 - 项目类别:
Continuing Grant
RAPID: Modeling and Analytics for COVID-19 Outbreak Response in India: A multi-institutional, US-India joint collaborative effort
RAPID:印度 COVID-19 疫情应对的建模和分析:美印多机构联合协作
- 批准号:
2142997 - 财政年份:2021
- 资助金额:
$ 17.8万 - 项目类别:
Standard Grant
RAMP VIS: Making Visual Analytics an Integral Part of the Technological Infrastructure for Combating COVID-19
RAMP VIS:使可视化分析成为抗击 COVID-19 技术基础设施的组成部分
- 批准号:
EP/V054236/1 - 财政年份:2021
- 资助金额:
$ 17.8万 - 项目类别:
Research Grant
COVID-19 Variant Network - The COVID-19 Hospital Analytics Laboratory: Improving the Clinical, Organizational, and System Response to COVID-19
COVID-19 变体网络 - COVID-19 医院分析实验室:改善对 COVID-19 的临床、组织和系统响应
- 批准号:
443342 - 财政年份:2021
- 资助金额:
$ 17.8万 - 项目类别:
Operating Grants
SCC-IRG JST: Multimodal Data Analytics and Integration for Effective COVID-19, Pandemics and Compound Disaster Response and Management
SCC-IRG JST:多模式数据分析和集成,实现有效的 COVID-19、流行病和复合灾害响应和管理
- 批准号:
2125165 - 财政年份:2021
- 资助金额:
$ 17.8万 - 项目类别:
Continuing Grant
COVID-19 Variant Supplement - The COVID-19 Hospital Analytics Laboratory: Improving the Clinical, Organizational, and System Response to COVID-19
COVID-19 变异补充 - COVID-19 医院分析实验室:改善对 COVID-19 的临床、组织和系统响应
- 批准号:
443284 - 财政年份:2021
- 资助金额:
$ 17.8万 - 项目类别:
Operating Grants
The COVID-19 Hospital Analytics Laboratory: Improving the Clinical, Organizational, and System Response to COVID-19
COVID-19 医院分析实验室:改善对 COVID-19 的临床、组织和系统响应
- 批准号:
430129 - 财政年份:2020
- 资助金额:
$ 17.8万 - 项目类别:
Operating Grants
Understanding the dynamics and drivers of the COVID-2019 epidemic using real-time outbreak analytics
使用实时疫情分析了解 COVID-2019 疫情的动态和驱动因素
- 批准号:
MC_PC_19065 - 财政年份:2020
- 资助金额:
$ 17.8万 - 项目类别:
Intramural
RAPID/Collaborative Research: Human-AI Teaming for Big Data Analytics to Enhance Response to the COVID-19 Pandemic
快速/协作研究:人类与人工智能合作进行大数据分析以增强对 COVID-19 大流行的响应
- 批准号:
2029698 - 财政年份:2020
- 资助金额:
$ 17.8万 - 项目类别:
Standard Grant
RAPID: Geospatially-Enabled Deep Analytics for Real-time Mitigation and Response to COVID-19 Outbreak for American Rural Populations
RAPID:基于地理空间的深度分析,用于实时缓解和响应美国农村人口的 COVID-19 爆发
- 批准号:
2027891 - 财政年份:2020
- 资助金额:
$ 17.8万 - 项目类别:
Standard Grant














{{item.name}}会员




