Engaging crowds: citizen research and heritage data at scale

吸引人群:大规模公民研究和遗产数据

基本信息

  • 批准号:
    AH/T011122/1
  • 负责人:
  • 金额:
    $ 27.97万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Public participation in heritage research has the potential to engage new audiences, to enlist the crowd in analysing and generating data at scale, and to invite new perspectives on our national collections. Key to releasing this potential is effective engagement of diverse audiences, and the development of workflows for the creation and re-use of data within collection discovery platforms, for training automated systems, and to give access to the citizens and researchers.We will identify ways of extending and deepening engagement across communities, proposing a best-practice framework for future citizen research projects with heritage data, informing their design and modelling. Citizen research and automation are two complementary methods for capturing and describing our increasing quantities of analogue, digital and digitised data. We propose articulating the synergies between them by developing workflows for the re-use of data beyond projects' initial focuses to provide current and future scholarship with the potential to address new research questions.Led by three IROs with significant experience of citizen research, Royal Botanic Gardens Edinburgh (RBGE), Royal Museums Greenwich (RMG) and The National Archives (TNA), and the world-leading citizen research expertise of the University of Oxford's Zooniverse with its distinctive free, open source infrastructure, community of 1.9 million volunteers worldwide, and technical expertise of having delivered over 190 crowdsourcing projects, this project is uniquely placed to research and prototype tools for deeper engagement with our collections through citizen research: to create a virtuous circle of increased and better informed public engagement that leads communities to create more collections data at scale.The project will convene expertise from across sectors to expand our citizen research community and to ensure the effective re-use of crowd-sourced data. This will be achieved by addressing the following questions:1. How can we best engage volunteers across the nation's communities with citizen research projects, to further a shared understanding of our collections? What existing methods and data are the most successful for measuring that engagement?2. How does the ability to navigate one's own path through the data of a citizen research project affect engagement with the project?3. How can we verify, assess, present, and value the contributions of citizen research?4. How can we enable the re-use of crowd-sourced data within collection discovery platforms, for training automated systems, and to give access to citizens and researchers that supports and encourages further engagement, re-use and analysis?5. Does easy access to data created by citizen research projects affect engagement with projects? What other tools are necessary to enable meaningful access to this data?
公众参与遗产研究有可能吸引新的受众,争取群众参与大规模分析和生成数据,并邀请对我们国家收藏的新观点。释放这一潜力的关键是有效地吸引不同的受众,开发工作流程,在收集发现平台内创建和重新使用数据,培训自动化系统,并向公民和研究人员提供访问权限。我们将确定如何扩大和深化跨社区的参与,为未来公民遗产数据研究项目提出最佳实践框架,为他们的设计和建模提供信息。公民研究和自动化是捕获和描述我们越来越多的模拟,数字和数字化数据的两种互补方法。我们建议通过开发工作流程来重新使用项目最初重点之外的数据,以阐明它们之间的协同作用,从而为当前和未来的奖学金提供解决新研究问题的潜力。由三个具有公民研究重要经验的IRO领导,皇家植物园爱丁堡(RBGE),皇家博物馆格林威治(RMG)和国家档案馆(TNA),以及牛津大学Zooniverse的世界领先的公民研究专业知识,其独特的免费开源基础设施,全球190万志愿者社区,以及交付190多个众包项目的技术专业知识,这个项目是独特的研究和原型工具,通过公民研究更深入地参与我们的收藏:创造一个良性循环,增加和更好地了解公众参与,引导社区大规模创建更多的收集数据。该项目将汇集来自各地的专业知识,我们还将继续与其他部门合作,扩大我们的公民研究社区,并确保有效地重新使用众包数据。这将通过解决以下问题来实现:1。我们如何才能最好地让全国社区的志愿者参与公民研究项目,以促进对我们收藏的共同理解?现有的哪些方法和数据在衡量这种参与方面最为成功?2.通过公民研究项目的数据导航自己的路径的能力如何影响参与该项目?3.我们如何验证、评估、呈现和评价公民研究的贡献?4.我们如何才能在收集发现平台内重新使用众包数据,以培训自动化系统,并让公民和研究人员获得支持和鼓励进一步参与,重新使用和分析?5.容易获得公民研究项目创建的数据是否会影响对项目的参与?为了能够有意义地访问这些数据,还需要哪些其他工具?

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scholarly Social Machines: A Web Science Perspective on our Knowledge Infrastructure
User engagement analysis
用户参与度分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogden B
  • 通讯作者:
    Ogden B
Volunteer survey report
志愿者调查报告
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fulton E
  • 通讯作者:
    Fulton E
Citizen Research Landscape
公民研究景观
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hawkins A
  • 通讯作者:
    Hawkins A
After the Crowds Disperse
人群散去后
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haston E
  • 通讯作者:
    Haston E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pip Willcox其他文献

Pip Willcox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Combining Opinions from Multiview Crowds
综合多方观点人群的意见
  • 批准号:
    23KJ1215
  • 财政年份:
    2023
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Methods for Bias-Free Information Gathering from Web and Crowds
从网络和人群中无偏见信息收集的方法
  • 批准号:
    23H03405
  • 财政年份:
    2023
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Steering crowds by non-invasive methods using the "nudging" approach: from laboratory to reality
使用“助推”方法通过非侵入性方法引导人群:从实验室到现实
  • 批准号:
    23K13521
  • 财政年份:
    2023
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interpretable and Generalizable Pedestrian Trajectory Prediction in Crowds
人群中可解释和可推广的行人轨迹预测
  • 批准号:
    23K16897
  • 财政年份:
    2023
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diverse Synthetic Crowds in Media, Design, and Analysis
媒体、设计和分析中的多样化综合群体
  • 批准号:
    RGPIN-2021-03541
  • 财政年份:
    2022
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Discovery Grants Program - Individual
Diverse Synthetic Crowds in Media, Design, and Analysis
媒体、设计和分析中的多样化综合群体
  • 批准号:
    RGPIN-2021-03541
  • 财政年份:
    2021
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Discovery Grants Program - Individual
Diverse Synthetic Crowds in Media, Design, and Analysis
媒体、设计和分析中的多样化综合群体
  • 批准号:
    DGECR-2021-00479
  • 财政年份:
    2021
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Discovery Launch Supplement
Communities & Crowds: Expanding Volunteer Programs Across Physical and Digital Spaces for Cultural Institutions
社区
  • 批准号:
    AH/V009508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Research Grant
Development of a system to steer crowds through imperceptible modifications of the surrounding environment
开发一个系统,通过周围环境的不易察觉的改变来引导人群
  • 批准号:
    20K14992
  • 财政年份:
    2020
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Wisdom-of-Crowds Approaches for Improving Predictions from Surveys
提高调查预测的群体智慧方法
  • 批准号:
    2019982
  • 财政年份:
    2020
  • 资助金额:
    $ 27.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了