Elucidating mechanisms of proton coupled and conformationally coupled electron transfer in redox enzymes catalysis

阐明氧化还原酶催化中质子耦合和构象耦合电子转移的机制

基本信息

  • 批准号:
    BB/G005869/1
  • 负责人:
  • 金额:
    $ 43.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Redox proteins, including metalloproteins, form a large portion of the protein kingdom. Metalloproteins themselves form ~ 30% of a genome. These contain metal ions either as a single atom or as part of a cluster and play a variety of life sustaining roles in the bacterial, plant and animal kingdoms. Many enzymes exploit the oxidation states of metals to perform redox cycling. Fundamental biological processes in which metalloproteins participate include electron storage and transfer, dioxygen binding, storage and activation, and substrate transport, catalysis and activation. In many metalloenzymes such as cytochrome c oxidase (essential for mammalian life through respiratory requirements), nitrogenases and nitrite reductases (essential in view of their central position in the nitrogen cycle), hydrogenases (producers of molecular hydrogen - an attractive candidate for a future alternative energy source), catalysis involves the controlled delivery of electrons and protons to the active site where substrate is utilised. While our understanding of factors involved in effective electron transfer is relatively well advanced, our understanding of proton transfer over a long range and on a matching time scale is severely limited. In copper nitrite reductases, we have shown that utilisation of substrate is accompanied by a controlled electron transfer between the electron delivery and substrate binding metal sites which must accompany a rapid availability of a proton. Through extensive analysis of atomic resolution structures of this enzyme isolated from two different microbial species and a large number of mutants, we have shown that electron delivery is regulated by subtle conformational changes (CCET) in what we have described as the 'sensor and signaling' loops around the active site following the binding of substrate. Although we know that the proton is delivered to the substrate bound at the active site via a proton channel that we have also identified, and where His254 plays a central role, no information is available on the structural factors that control and mediate its delivery. We have previously shown that the H245F substitution disrupts the water H-bonding network in this channel but were unable to correlate this with any effect on catalytic activity due to the presence of Zn in the T2Cu catalytic site. During the last few weeks, we have been successful in incorporating Cu into this mutant. Activity measurements together with a new 1.55Å resolution structure of this mutant, has led to the surprising discovery that the second proton channel, which so far has been presumed to be activated only at high pH, contributes significantly to proton delivery at physiological pH. Preliminary analysis of the location of hydrogen atoms in our 0.9Å resolution structure of NiR has revealed that some 30% of the expected hydrogen atoms are visible in the structure experimentally. Recently, we have also succeeded in isolating preparations of enzyme with a stable nitrosyl species from cell extracts, the crystal structure of which has revealed full NO occupancy at the catalytic T2Cu. The availability of atomic resolution structures for these enzymes and mutants, and amenability of these systems for further manipulation by directed mutagenesis, presents an ideal opportunity to apply a wide-ranging programme utilising kinetic, biophysical and electrochemical approaches to the problem of poorly understood PCET, CCET and CGET processes in biology. The studies outlined above will provide a step-change in our understanding of the fundamental processes that underlie the mechanisms of redox enzymes, which impact on life-sustaining processes. The overall principles derived from these studies, aimed towards an understanding of the control of electron, proton and substrate delivery, regulation and utilization will also be of broader relevance to UK's effort in understanding biological processes through an integrated biology approach.
氧化还原蛋白,包括金属蛋白,形成蛋白质王国的很大一部分。金属蛋白本身占基因组的30%。这些包含金属离子作为单个原子或作为簇的一部分,并在细菌,植物和动物王国中发挥各种生命维持作用。许多酶利用金属的氧化态来进行氧化还原循环。金属蛋白参与的基本生物学过程包括电子储存和传递、分子氧结合、储存和活化以及底物转运、催化和活化。在许多金属酶中,例如细胞色素c氧化酶(通过呼吸需求对哺乳动物生命至关重要)、固氮酶和亚硝酸盐还原酶(鉴于其在氮循环中的中心位置而至关重要)、氢化酶(分子氢的生产者-未来替代能源的有吸引力的候选者),催化涉及电子和质子到利用底物的活性位点的受控传递。虽然我们对有效电子转移中所涉及的因素的理解相对较先进,但我们对长范围内和匹配时间尺度上的质子转移的理解是非常有限的。在亚硝酸铜还原酶,我们已经表明,利用基板是伴随着一个受控的电子传递和基板之间的结合金属网站,必须伴随着一个质子的快速可用性的电子转移。通过广泛的原子分辨率结构的分析,这种酶从两种不同的微生物物种和大量的突变体分离,我们已经表明,电子传递的调节微妙的构象变化(CET)在我们所描述的“传感器和信号”环周围的活性位点结合底物。虽然我们知道质子通过我们已经确定的质子通道传递到活性位点结合的底物,并且His 254在其中起着核心作用,但没有关于控制和介导其传递的结构因子的信息。我们以前已经表明,H245 F取代破坏了水的H-键合网络在这个通道中,但无法关联这与任何影响的催化活性,由于锌的存在下,在T2 Cu催化位点。在过去的几周里,我们已经成功地将Cu整合到这个突变体中。活性测量以及该突变体的新的1.55 μ m分辨率结构导致了令人惊讶的发现,即迄今为止被认为仅在高pH下激活的第二质子通道,在生理pH值下对质子传递有显著贡献。对NiR的0.9 μ m分辨率结构中氢原子位置的初步分析表明,约30%的NiR结构中氢原子的位置与质子的传递有关。的预期氢原子是可见的结构实验。最近,我们还成功地分离制备酶与稳定的亚硝酰基物种从细胞提取物,其晶体结构已揭示完全NO占用在催化T2 Cu。这些酶和突变体的原子分辨率结构的可用性,以及这些系统的定向诱变进一步操作的顺从性,提供了一个理想的机会,应用广泛的程序,利用动力学,生物物理和电化学方法的问题知之甚少PCET,CCET和CGET过程中的生物学。上面概述的研究将为我们理解氧化还原酶机制的基本过程提供一个步骤,氧化还原酶影响生命维持过程。从这些研究中得出的总体原则,旨在了解电子,质子和底物的传递,调节和利用的控制,也将是更广泛的相关性,英国的努力,通过综合生物学方法理解生物过程。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structures of protein-protein complexes involved in electron transfer.
  • DOI:
    10.1038/nature11996
  • 发表时间:
    2013-04-04
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
  • 通讯作者:
Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase.
  • DOI:
    10.1038/ncomms5395
  • 发表时间:
    2014-07-15
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Leferink, Nicole G. H.;Antonyuk, Svetlana V.;Houwman, Joseline A.;Scrutton, Nigel S.;Eady, Robert R.;Hasnain, S. Samar
  • 通讯作者:
    Hasnain, S. Samar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samar Hasnain其他文献

Samar Hasnain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samar Hasnain', 18)}}的其他基金

Towards a paradigm shift in understanding of membrane-bound Nitric Oxide reductase and its complexes with the electron donor and NO-producing enzyme
膜结合一氧化氮还原酶及其与电子供体和 NO 产生酶复合物的理解的范式转变
  • 批准号:
    BB/X015491/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Japan Partnering : Damage free structures of enzymes of denitrification pathway and their complexes using SF-ROX and SFX at SACLA XFEL
日本合作:在 SACLA XFEL 使用 SF-ROX 和 SFX 反硝化途径酶及其复合物的无损伤结构
  • 批准号:
    BB/S020055/1
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Why does Nature use modular enzyme architectures for biological catalysis?
为什么 Nature 使用模块化酶结构进行生物催化?
  • 批准号:
    BB/N013972/1
  • 财政年份:
    2017
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Transient and Stable Macromolecular Complexes Formed by Denitrifying Enzymes
反硝化酶形成的瞬时和稳定的大分子复合物
  • 批准号:
    BB/L006960/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Provision of the MAD/XAFS facility for the UK structural biology community
为英国结构生物学界提供 MAD/XAFS 设施
  • 批准号:
    BB/E001971/2
  • 财政年份:
    2009
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Towards a complete structure-function description of the denitrification pathway
实现反硝化途径的完整结构功能描述
  • 批准号:
    BB/D016290/2
  • 财政年份:
    2008
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Towards a complete structure-function description of the denitrification pathway
实现反硝化途径的完整结构功能描述
  • 批准号:
    BB/D016290/1
  • 财政年份:
    2006
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
Provision of the MAD/XAFS facility for the UK structural biology community
为英国结构生物学界提供 MAD/XAFS 设施
  • 批准号:
    BB/E001971/1
  • 财政年份:
    2006
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular mechanisms of proton-coupled dynamic processes in biology
生物学中质子耦合动态过程的分子机制
  • 批准号:
    10552201
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
Novel Mechanisms of Pulmonary Fibrosis
肺纤维化的新机制
  • 批准号:
    10660225
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
Molecular Mechanisms of Oxidation Resistance 1 in Parkinson's disease and Lewy Body Dementia
帕金森病和路易体痴呆中抗氧化1的分子机制
  • 批准号:
    10718691
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
Dissecting Neural Circuit Mechanisms Underlying Pallidal Deep Brain Stimulation
剖析苍白球深部脑刺激背后的神经回路机制
  • 批准号:
    10730757
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
Molecular mechanisms of auxin response
生长素反应的分子机制
  • 批准号:
    10404759
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
Multidimensional mapping of proteome changes and mechanisms underlying yeast replicative aging
蛋白质组变化和酵母复制衰老机制的多维图谱
  • 批准号:
    10523016
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
Pathogenic Mechanisms of Craniometaphyseal Dysplasia
颅骨干骺端发育不良的发病机制
  • 批准号:
    10630298
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
Molecular mechanisms of proton-sensing in CO2-dependent breathing
CO2 依赖性呼吸中质子传感的分子机制
  • 批准号:
    10740838
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
MOLECULAR MECHANISMS OF V-ATPASES: ASSEMBLY, BIOGENESIS, REGULATION, AND FUNCTION
V-ATP酶的分子机制:组装、生物发生、调节和功能
  • 批准号:
    10501202
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
Multidimensional mapping of proteome changes and mechanisms underlying yeast replicative aging
蛋白质组变化和酵母复制衰老机制的多维图谱
  • 批准号:
    10682613
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了