Computational modelling of the relationships between miscanthus genotype environment and phenotype
芒草基因型环境与表型关系的计算模型
基本信息
- 批准号:BB/H016481/1
- 负责人:
- 金额:$ 9.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Training Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IBERS has generated, and is generating, large quantities of genotype, phenotype and environment based data, along with associated metadata from the energy crop Miscanthus. The student appointed to this project would build on these data sets to create new scientific knowledge about the predictive relationships between data types. This knowledge will be encoded in computational models. To develop the models the student will learn and apply state-of-the-art data-mining and machine-learning methods to identify and characterise genes underlying important quantitative traits (QTL). These will enable the better understanding of Miscanthus biology, and through the defining of ideotypes guide Miscanthus breeding. BACKGROUND The domestication of a new crop as a bioenergy feedstock, requires the application of a wide range of techniques including genetics, biochemistry, physiology, chemical engineering, bioinformatics and system biology modelling. Over the last five years at IBERS a Miscanthus research platform, including a replicated trait trial of 248 diverse genotypes, has been established. Four years of intensive phenotyping of this population, and their progeny from crosses, have resulted in the generation of more than 100,000 datasets. These have been incorporated into a powerful custom coded integrated Miscanthus informatics platform. Example descriptors include: growth environment, morphology, architecture, flowering time, senescence, yield, spring emergence, ploidy, genetic group, and lignin, cellulose, hemicellulose, and cell wall phenolic concentrations. The consolidation of this information and utilisation in predictive models is very important if we are to maximise the value of the data and therefore increase the pace of crop improvement. APPROACH The student will use a combination of data-mining and machine-learning to analyse datasets to identify important associations and to form predictive rules that relate Miscanthus phenotype, genotype and environment. This will use recently developed data-mining and machine-learning techniques, that are well suited to the structure of the data, to create association models. This will be done in close interaction with scientists at IBERS and Ceres who will provide feedback on the patterns and association rules. The process will be an interactive one. The 'interesting' patterns identified by data-mining (e.g. QTL) will provide insight into Miscanthus biology, and will be fed into the machine learning systems as new descriptive attributes to improve the modelling. The analysis of genotype/environment/phenotype data is technically challenging because there are a large number of descriptors, and many of these are best represented relationally. This means that standard statistical methods are probably sub-optimal. Typical aspects of Miscanthus data that lend themselves to relational description are: temporal relations; spatial relations across fields and plants; pedigree relationships between genotypes, etc. Much of statistical genetics, and fields such as spatial statistics, are devoted to developing ad hoc solutions to relational problems that can now be solved in principled ways. Data-mining and machine-learning methods have been used to develop predictive phenotype models using human genotype and environment data; but to the best of our knowledge there have been no application in plant genetics. To evaluate and compare the performance of the approaches with standard statistical genetic methods, we will use standard re-sampling approaches, including cross-validation and bootstrapping. TRAINING This proposed project is well suited to a PhD research project as it combines fallback elements (statistical genetics) along with open-ended elements (relational learning). There are strong training elements of the proposal as the student will gain experience in genetics, bio-energy, data-mining, and machine-learning, all skills likely to be in high-demand in the future job market
IBERS已经并正在生成大量基于基因型、表型和环境的数据,以及来自能源作物芒草的相关元数据。被任命为该项目的学生将在这些数据集的基础上,创建有关数据类型之间预测关系的新科学知识。这些知识将被编码到计算模型中。为了开发模型,学生将学习和应用最先进的数据挖掘和机器学习方法来识别和表征重要数量性状(QTL)的基因。这将有助于更好地了解芒草生物学,并通过定义芒草的理想型来指导芒草的育种。驯化一种新作物作为生物能源原料,需要广泛的技术应用,包括遗传学、生物化学、生理学、化学工程、生物信息学和系统生物学建模。在过去的五年里,IBERS建立了一个芒草研究平台,包括248种不同基因型的重复性状试验。对这一种群及其杂交后代进行了四年的密集表型分析,产生了超过10万个数据集。这些已被纳入一个强大的自定义编码集成芒草信息平台。示例描述包括:生长环境、形态、结构、开花时间、衰老、产量、春季出苗、倍性、遗传群、木质素、纤维素、半纤维素和细胞壁酚浓度。如果我们要最大限度地发挥数据的价值,从而加快作物改良的步伐,那么整合这些信息并在预测模型中加以利用是非常重要的。该学生将结合数据挖掘和机器学习来分析数据集,以确定重要的关联,并形成将芒草表型、基因型和环境联系起来的预测规则。这将使用最近开发的数据挖掘和机器学习技术,这些技术非常适合数据结构,以创建关联模型。这将与IBERS和Ceres的科学家密切互动,他们将提供关于模式和关联规则的反馈。这个过程将是一个互动的过程。通过数据挖掘识别的“有趣”模式(例如QTL)将提供对芒草生物学的深入了解,并将作为新的描述性属性输入机器学习系统,以改进建模。基因型/环境/表型数据的分析在技术上具有挑战性,因为有大量的描述符,其中许多是最好的关系表示。这意味着标准的统计方法可能不是最优的。Miscanthus数据适合于关系描述的典型方面有:时间关系;田野与植物间的空间关系;基因型间的家系关系等。许多统计遗传学,以及诸如空间统计学等领域,都致力于为关系问题开发特殊的解决方案,这些解决方案现在可以用原则的方式来解决。数据挖掘和机器学习方法已被用于利用人类基因型和环境数据开发预测表型模型;但据我们所知,在植物遗传学上还没有应用。为了评估和比较这些方法与标准统计遗传方法的性能,我们将使用标准的重新抽样方法,包括交叉验证和自举。这个提议的项目非常适合博士研究项目,因为它结合了后备元素(统计遗传学)和开放式元素(关系学习)。该提案有很强的培训元素,因为学生将获得遗传学、生物能源、数据挖掘和机器学习方面的经验,这些技能在未来的就业市场上很可能是高需求的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unveiling defect-strain relationships in halide perovskite solar cells through modelling-experiment combinations
通过建模-实验组合揭示卤化物钙钛矿太阳能电池中的缺陷-应变关系
- 批准号:
EP/X025756/1 - 财政年份:2022
- 资助金额:
$ 9.59万 - 项目类别:
Fellowship
Joint modelling of propensity scores and heaping model to assess causal relationships in large observational database
倾向评分和堆积模型的联合建模以评估大型观察数据库中的因果关系
- 批准号:
534600-2019 - 财政年份:2021
- 资助金额:
$ 9.59万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modelling of Multimodal Relationships Between Cortical Atrophy, Tau Protein Accumulation, and White Matter Degeneration for Early Alzheimer Disease Diagnosis
皮质萎缩、Tau 蛋白积累和白质变性之间的多模态关系建模,用于早期阿尔茨海默病诊断
- 批准号:
566721-2021 - 财政年份:2021
- 资助金额:
$ 9.59万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Agent-based Modelling and Visualizing Architectural Inter-Relationships within an Air Transport System of Systems
基于代理的建模和可视化航空运输系统中的架构相互关系
- 批准号:
2575410 - 财政年份:2021
- 资助金额:
$ 9.59万 - 项目类别:
Studentship
Joint modelling of propensity scores and heaping model to assess causal relationships in large observational database
倾向评分和堆积模型的联合建模以评估大型观察数据库中的因果关系
- 批准号:
534600-2019 - 财政年份:2020
- 资助金额:
$ 9.59万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Novel techniques for stochastic modelling of time-dependent multivariate relationships with application to primary visual cortex
时间依赖性多元关系随机建模的新技术及其应用于初级视觉皮层
- 批准号:
EP/S005692/1 - 财政年份:2019
- 资助金额:
$ 9.59万 - 项目类别:
Research Grant
A general framework for modelling functional divergence at the molecular level, and investigating relationships to phenotype.
用于在分子水平上模拟功能分歧并研究与表型关系的通用框架。
- 批准号:
RGPIN-2015-03645 - 财政年份:2019
- 资助金额:
$ 9.59万 - 项目类别:
Discovery Grants Program - Individual
Taylored Material Properties via Microstructure Optimization: Machine Learning for Modelling and Inversion of Structure-Property-Relationships and their Application to Sheet Metals
通过微观结构优化泰勒化材料特性:结构-性能-关系建模和反演的机器学习及其在钣金中的应用
- 批准号:
415804944 - 财政年份:2019
- 资助金额:
$ 9.59万 - 项目类别:
Research Grants
Joint modelling of propensity scores and heaping model to assess causal relationships in large observational database
倾向评分和堆积模型的联合建模以评估大型观察数据库中的因果关系
- 批准号:
534600-2019 - 财政年份:2019
- 资助金额:
$ 9.59万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning the next generation of drug targets by modelling diseases, targets and their relationships
通过对疾病、靶点及其关系进行建模来学习下一代药物靶点
- 批准号:
2281344 - 财政年份:2019
- 资助金额:
$ 9.59万 - 项目类别:
Studentship














{{item.name}}会员




