Dynamic post-translational histone modifications studied by NMR spectroscopy

通过核磁共振波谱研究动态翻译后组蛋白修饰

基本信息

  • 批准号:
    BB/H022570/1
  • 负责人:
  • 金额:
    $ 166.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

DNA molecules of human cells are many times longer than the diameter of the cell and consequently the DNA is packed into a compact structure called the chromatin. The chromatin consists of DNA molecules coiled around histone proteins (sticky pulleys) in a very systematic manner. The cell utilises several mechanisms to control exactly what inheritable information from the DNA molecule that is turned into functional product (cellular machines). One mechanism that the cell exploits is to change the charge of certain histone proteins (weaken or strengthen the stickiness of the pulleys) and thus expose or restrict a specific part of the DNA to the cells gene production apparatus. HDAC, an enzyme that is responsible for changing the charge of histone proteins (a stickiness enhancer) will be the focus of the proposed research project. The HDAC enzyme works as a scissors that strips a negative charge off the histone proteins, thereby rendering the histone tails positively charged which strengthen the interaction with the negatively charged DNA. In particular, the focus of the proposed project is the dynamics and molecular motions of the HDAC enzyme (how does the scissors cut) and the dynamics will be studied primarily with nuclear magnetic resonance (NMR) spectroscopy. Thus, one of the key objectives of the research is to characterise, at atomic resolution, the mechanism by which the HDAC enzyme alter the histone charges. The goal is also to characterise how HDAC enzymes interact with inhibitors (drugs) and histones. HDAC enzymes are involved in cancers where they are believed to suppress the production of tumour suppressors. Inhibitors of HDAC enzymes have shown anti-tumour activity and it is therefore likely that the outcome of the proposed research will lead to the design of specific inhibitors of HDAC enzymes ultimately resulting in more efficient cancer therapy. An understanding of histone modifications requires a detailed picture of the three-dimensional structure of the involved enzymes and an appreciation of how these structures vary and fluctuate with time (a scissors cuts due to its opening and closing motions). Static structures of HDAC enzymes have been determined over the last decade, however, very few studies on the flexibility and dynamics of these regulatory molecules have been published. The proposed project focuses on the use of NMR spectroscopy as the primary biophysical tool to elucidate molecular flexibility and interactions since NMR has the potential to provide a description of the dynamics and interactions at atomic resolution. It is the goal that the NMR measurements together with other experimental techniques and computer simulations will create a coherent characterisation of the enzyme function. Another major objective of the proposed research is to develop new NMR methods to characterise molecular dynamics and flexibility in general. These developments aim at a time-resolved description of enzyme motions, that is, a visualisation of the enzyme motions over time - as a movie - as opposed to previous methods that primarily provides the amplitudes of protein motions. The research will be carried out at the Institute of Structural and Molecular Biology (ISMB), a joint venture between Birkbeck and University College London (UCL). UCL and ISMB provide a state-of-the-art and stimulating research environment with dedicated NMR machines suitable for the proposed project. Also, the highly collaborative environment and world-class expertise at ISMB and UCL open up the possibility for fruitful collaborations. For example, to increase the likelihood of success in the development of new HDAC inhibitors, I have initiated a collaboration with Prof Charles Marson, UCL, who is an expert on the productions of HDAC inhibitors. In my opinion this collaboration will allow the results about the HDAC enzyme dynamics, obtained by NMR spectroscopy, to be taken one important step further towards the design of new medicine.
人类细胞的DNA分子比细胞的直径长许多倍,因此DNA被包装成称为染色质的紧凑结构。染色质由DNA分子以非常系统的方式盘绕在组蛋白(粘性滑轮)周围组成。细胞利用几种机制来精确地控制来自DNA分子的哪些可遗传信息转化为功能产物(细胞机器)。细胞利用的一种机制是改变某些组蛋白的电荷(减弱或加强滑轮的粘性),从而将DNA的特定部分暴露或限制在细胞的基因生产装置中。HDAC是一种负责改变组蛋白(一种粘性增强剂)电荷的酶,将成为拟议研究项目的重点。HDAC酶就像一把剪刀,可以剥离组蛋白上的负电荷,从而使组蛋白尾部带正电,从而加强与带负电荷的DNA的相互作用。特别是,拟议项目的重点是HDAC酶的动力学和分子运动(剪刀如何剪切),动力学将主要通过核磁共振(NMR)光谱进行研究。因此,该研究的关键目标之一是在原子分辨率下研究HDAC酶改变组蛋白电荷的机制。目标还包括表征HDAC酶如何与抑制剂(药物)和组蛋白相互作用。HDAC酶与癌症有关,据信它们抑制肿瘤抑制因子的产生。HDAC酶的抑制剂已显示出抗肿瘤活性,因此,拟议研究的结果可能会导致HDAC酶的特异性抑制剂的设计,最终导致更有效的癌症治疗。要理解组蛋白修饰,需要对所涉及的酶的三维结构有一个详细的了解,并了解这些结构如何随时间变化和波动(剪刀由于其开合运动而剪切)。在过去的十年中,HDAC酶的静态结构已经确定,然而,很少有关于这些调节分子的灵活性和动力学的研究已经发表。拟议项目的重点是使用核磁共振波谱作为主要的生物物理工具,以阐明分子的灵活性和相互作用,因为核磁共振有可能提供一个原子分辨率的动力学和相互作用的描述。目标是NMR测量与其他实验技术和计算机模拟一起将创建酶功能的一致表征。拟议研究的另一个主要目标是开发新的NMR方法来研究分子动力学和一般的灵活性。这些发展旨在对酶运动进行时间分辨的描述,即酶运动随时间的可视化-作为电影-与主要提供蛋白质运动幅度的先前方法相反。这项研究将在伯克贝克学院和伦敦大学学院(UCL)的合资企业结构和分子生物学研究所(ISMB)进行。UCL和ISMB提供了一个国家的最先进的和刺激的研究环境与专用的核磁共振机器适合拟议的项目。此外,ISMB和UCL的高度协作环境和世界一流的专业知识为富有成效的合作开辟了可能性。例如,为了增加新HDAC抑制剂开发成功的可能性,我与UCL的Charles Marson教授合作,他是HDAC抑制剂生产方面的专家。在我看来,这项合作将使通过NMR光谱学获得的HDAC酶动力学的结果朝着新药设计迈出重要的一步。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protein NMR - Modern Techniques and Biomedical Applications
蛋白质 NMR - 现代技术和生物医学应用
  • DOI:
    10.1007/978-1-4899-7621-5_3
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sauerwein A
  • 通讯作者:
    Sauerwein A
Solution structure of the major factor VIII binding region on von Willebrand factor.
冯·维勒布兰德因子上主要因子 VIII 结合区域的溶液结构。
  • DOI:
    10.1182/blood-2013-07-517086
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    20.3
  • 作者:
    Shiltagh N
  • 通讯作者:
    Shiltagh N
Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals.
  • DOI:
    10.1021/ja209348p
  • 发表时间:
    2012-03-14
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Hansen, D. Flemming;Westler, William M.;Kunze, Micha B. A.;Markley, John L.;Weinhold, Frank;Led, Jens J.
  • 通讯作者:
    Led, Jens J.
Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy.
  • DOI:
    10.1002/anie.201605870
  • 发表时间:
    2016-09-19
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Juen, Michael Andreas;Wunderlich, Christoph Hermann;Nussbaumer, Felix;Tollinger, Martin;Kontaxis, Georg;Konrat, Robert;Hansen, D. Flemming;Kreutz, Christoph
  • 通讯作者:
    Kreutz, Christoph
Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8.
  • DOI:
    10.1021/ja408184x
  • 发表时间:
    2013-11-27
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Kunze MB;Wright DW;Werbeck ND;Kirkpatrick J;Coveney PV;Hansen DF
  • 通讯作者:
    Hansen DF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Flemming Hansen其他文献

Emotional Responses to Top Politicians in a General Election
大选中对高级政治家的情绪反应
  • DOI:
    10.1515/nor-2017-0210
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Flemming Hansen;Steen Lundsteen;S. R. Christensen
  • 通讯作者:
    S. R. Christensen
Emotional Responses: A New Paradigm in Communication Research
情绪反应:传播研究的新范式
  • DOI:
    10.1016/s1474-7979(06)18004-7
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Flemming Hansen;S. R. Christensen;Steen Lundsteen;Larry Percy
  • 通讯作者:
    Larry Percy
Towards an alternative theory of the advertising communication process
走向广告传播过程的替代理论
Branding and advertising
品牌和广告
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Flemming Hansen;Lars Bech Christensen
  • 通讯作者:
    Lars Bech Christensen
The relationship between brain lateralization measured with self-reporting techniques and with dichotic listening
  • DOI:
    10.1016/0167-4870(84)90020-5
  • 发表时间:
    1984-03
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Flemming Hansen
  • 通讯作者:
    Flemming Hansen

Flemming Hansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Flemming Hansen', 18)}}的其他基金

DeepNMR: Unleashing the full potential of NMR spectroscopy with artificial intelligence and deep learning
DeepNMR:通过人工智能和深度学习释放 NMR 波谱的全部潜力
  • 批准号:
    EP/X036782/1
  • 财政年份:
    2023
  • 资助金额:
    $ 166.39万
  • 项目类别:
    Research Grant
Developing Artificial Intelligence and Deep Learning for the analysis of correlation spectroscopy data
开发人工智能和深度学习来分析相关光谱数据
  • 批准号:
    BB/T011831/1
  • 财政年份:
    2020
  • 资助金额:
    $ 166.39万
  • 项目类别:
    Research Grant
Characterising structure, interactions and dynamics of large molecular machines and intrinsically disordered proteins using novel carbon-detected NMR
使用新型碳检测 NMR 表征大分子机器和本质无序蛋白质的结构、相互作用和动力学
  • 批准号:
    BB/R000255/1
  • 财政年份:
    2017
  • 资助金额:
    $ 166.39万
  • 项目类别:
    Research Grant

相似国自然基金

基于可见光环化反应的Post-Iboga类吲哚生物碱不对称集群合成
  • 批准号:
    22361048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
  • 批准号:
    82372202
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
  • 批准号:
    82371738
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
NOD1棕榈酰化修饰通过炎症信号调控胰岛素抵抗的分子机制
  • 批准号:
    32000529
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
  • 批准号:
    31970707
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
含21微米和30微米辐射特征的星周包层中的气态分子
  • 批准号:
    11973099
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
缺氧通过eIF4E2/GSK3β信号通路调控细胞衰老的作用及机制
  • 批准号:
    31970682
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
蛋白质激酶MAPK7参与纤毛组装的功能和分子机理
  • 批准号:
    31972888
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
细胞代谢重组过程中蛋白质组热稳定性分析
  • 批准号:
    31970706
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structural basis for regulation of beta2 adrenergic receptor signaling by the dynamic post-translational modification S-palmitoylation
动态翻译后修饰S-棕榈酰化调节β2肾上腺素受体信号传导的结构基础
  • 批准号:
    10603466
  • 财政年份:
    2023
  • 资助金额:
    $ 166.39万
  • 项目类别:
Integrated mass spectrometry-based chemoproteomic and genomic technologies for studying dynamic kinase interactomes
基于集成质谱的化学蛋白质组学和基因组技术,用于研究动态激酶相互作用组
  • 批准号:
    10714921
  • 财政年份:
    2023
  • 资助金额:
    $ 166.39万
  • 项目类别:
Dynamic temporal regulation of astrocyte coupling to shape neuronal activity during acquired epilepsy development
获得性癫痫发展过程中星形胶质细胞耦合塑造神经元活动的动态时间调节
  • 批准号:
    10366826
  • 财政年份:
    2022
  • 资助金额:
    $ 166.39万
  • 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
  • 批准号:
    10481225
  • 财政年份:
    2022
  • 资助金额:
    $ 166.39万
  • 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
  • 批准号:
    10686135
  • 财政年份:
    2022
  • 资助金额:
    $ 166.39万
  • 项目类别:
Post-translational modification proteomics in 4D: Chemoenzymatic tools to map the dynamic spatial organization of eukaryotic signaling pathways
4D 翻译后修饰蛋白质组学:绘制真核信号通路动态空间组织的化学酶工具
  • 批准号:
    10471100
  • 财政年份:
    2022
  • 资助金额:
    $ 166.39万
  • 项目类别:
Dynamic temporal regulation of astrocyte coupling to shape neuronal activity during acquired epilepsy development
获得性癫痫发展过程中星形胶质细胞耦合塑造神经元活动的动态时间调节
  • 批准号:
    10620622
  • 财政年份:
    2022
  • 资助金额:
    $ 166.39万
  • 项目类别:
Unraveling the PTEN Interactome: Modeling Structural and Functional Dynamic Network Architecture for Therapeutic Modulation in Cancer and Autism
揭开 PTEN 相互作用组:为癌症和自闭症治疗调节的结构和功能动态网络架构建模
  • 批准号:
    10439873
  • 财政年份:
    2021
  • 资助金额:
    $ 166.39万
  • 项目类别:
The Regulation of Orai1 and STIM1 by Dynamic S-Acylation
动态 S-酰化对 Orai1 和 STIM1 的调节
  • 批准号:
    10560518
  • 财政年份:
    2021
  • 资助金额:
    $ 166.39万
  • 项目类别:
The Regulation of Orai1 and STIM1 by Dynamic S-Acylation
动态 S-酰化对 Orai1 和 STIM1 的调节
  • 批准号:
    10329913
  • 财政年份:
    2021
  • 资助金额:
    $ 166.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了