Systems Understanding of Microbial Oxygen-Dependent and Independent Catabolism (SUMO2)

微生物氧依赖性和独立分解代谢的系统理解 (SUMO2)

基本信息

  • 批准号:
    BB/I004777/1
  • 负责人:
  • 金额:
    $ 34.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

In this project, a multidisciplinary team of scientists, comprising molecular biologists, biochemists, mathematicians and computer scientists will work together and use Systems Biology to study the response of a bacterium to oxygen in its environment. The bacterium is E. coli, a major model organism, study of which has provided much of our current knowledge of basic molecular biology and continues to be the workhorse of the biotechnology sector. The Systems Biology approach to research is a relatively new area of investigation that tries to understand entire biological processes or systems (such as an organism and its behaviour), rather than merely the components of the system (such as atoms, molecules, and individual reactions). In effect, Systems Biology attempts to 'put Humpty Dumpty together again'. Systems Biology can be used to simulate biological processes and predict the outcome of perturbing the system, even before experiments are carried out. This ability to predict leads to the design of more meaningful experiments. We aim to obtain a complete, quantitative description of the metabolism of this bacterium, i.e. understand how carbon foodstuffs are broken down and used to generate energy in fermentation and respiration. The expected results are as follows. (1) Complex experimental results describing: (a) the dynamics of gene expression during the change from fermentative to anaerobic (i.e. without oxygen) respiratory growth; (b) the dynamics of responses to pulses of oxidants (oxygen and chemically related molecules); (c) the effects of mutation of substrate transport processes on physiology under defined aerobiosis conditions (i.e. in air); (d) effects of perturbation of central metabolism by mutation and by switching carbon source; (e) the role of a branched respiratory chain in adapting when conditions change. (2) Multi-scale, multi-level mathematical models describing: (a) the dynamics of gene regulatory networks during perturbations of anaerobic cultures; (b) the regulatory consequences of dynamics within complex networks of gene regulation processes; (c) the regulatory mechanisms of gene promoters; (d) catabolism (break-down) of foodstuffs from their entry into the cell right through to energy generation, including anaerobic pathways; (e) the regulation and action of alternative respiratory chains; (f) single-cell dynamics and cell behaviour in unstable conditions. (3) The formulation of a predictive, quantitative, experimentally validated model of the integrated metabolic sub-systems of E. coli and how these respond to changes in internal and external signals.
在这个项目中,一个由分子生物学家、生物化学家、数学家和计算机科学家组成的多学科科学家团队将共同努力,利用系统生物学研究细菌对环境中氧气的反应。该菌为E.大肠杆菌是一种主要的模式生物,对大肠杆菌的研究为我们提供了目前基本分子生物学的大部分知识,并继续成为生物技术部门的主力。系统生物学研究方法是一个相对较新的研究领域,试图了解整个生物过程或系统(如有机体及其行为),而不仅仅是系统的组成部分(如原子,分子和个体反应)。实际上,系统生物学试图“把Humpty Dumpty再次放在一起”。系统生物学可以用来模拟生物过程,并预测干扰系统的结果,甚至在实验进行之前。这种预测能力导致设计更有意义的实验。我们的目标是获得这种细菌代谢的完整定量描述,即了解碳食物如何被分解并用于在发酵和呼吸中产生能量。预期结果如下。(1)复杂的实验结果描述:(a)从发酵到厌氧的变化过程中基因表达的动态(即无氧)呼吸生长;(B)对氧化剂脉冲的响应动力学(氧和化学相关分子);(c)在确定的有氧条件下,基质运输过程的突变对生理学的影响(d)突变和转换碳源干扰中枢代谢的影响;(e)呼吸链分支在适应条件变化方面的作用。(2)描述以下内容的多尺度、多层次数学模型:(a)厌氧培养物扰动期间基因调控网络的动态;(B)基因调控过程复杂网络内动态的调控结果;(c)基因启动子的调控机制;(d)催化剂(e)替代呼吸链的调节和作用;(f)单细胞动力学和不稳定条件下的细胞行为。(3)制定了一个预测,定量,实验验证模型的综合代谢子系统的E。以及它们如何对内部和外部信号的变化做出反应。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Inference in Latent Diffusion Processes from Continuous Time Observations
根据连续时间观测对潜在扩散过程进行近似推断
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Botond Cseke (Author)
  • 通讯作者:
    Botond Cseke (Author)
Sparse Approximate Inference for Spatio-Temporal Point Process Models
时空点过程模型的稀疏近似推理
MMDiff: quantitative testing for shape changes in ChIP-Seq data sets.
  • DOI:
    10.1186/1471-2164-14-826
  • 发表时间:
    2013-11-24
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Schweikert G;Cseke B;Clouaire T;Bird A;Sanguinetti G
  • 通讯作者:
    Sanguinetti G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guido Sanguinetti其他文献

Machine Learning Methods in Statistical Model Checking and System Design – A Tutorial Introduction ?
统计模型检查和系统设计中的机器学习方法 – 教程介绍?
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luca Bortolussi;Dimitrios Milios;Guido Sanguinetti
  • 通讯作者:
    Guido Sanguinetti
Edinburgh Research Explorer Property-driven State-Space Coarsening for Continuous Time Markov Chains
爱丁堡研究探索者连续时间马尔可夫链的属性驱动状态空间粗化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Michaelides;Dimitrios Milios;Jane Hillston;Guido Sanguinetti
  • 通讯作者:
    Guido Sanguinetti
NeuroVelo: interpretable learning of temporal cellular dynamics from single-cell data
NeuroVelo:从单细胞数据中可解释地学习时间细胞动力学
  • DOI:
    10.1101/2023.11.17.567500
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Idris Kouadri Boudjelthia;Salvatore Milite;Nour El Kazwini;Yuanhua Huang;A. Sottoriva;Guido Sanguinetti
  • 通讯作者:
    Guido Sanguinetti
Bottom-up data integration in polymer models of chromatin organization
  • DOI:
    10.1016/j.bpj.2023.12.006
  • 发表时间:
    2024-01-16
  • 期刊:
  • 影响因子:
  • 作者:
    Alex Chen Yi Zhang;Angelo Rosa;Guido Sanguinetti
  • 通讯作者:
    Guido Sanguinetti
Promoting Access to White Rose Research Papers Dimensionality Reduction of Clustered Data Sets
促进白玫瑰研究论文的获取 聚类数据集的降维
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    White Rose;Research Online;Guido Sanguinetti
  • 通讯作者:
    Guido Sanguinetti

Guido Sanguinetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guido Sanguinetti', 18)}}的其他基金

Large scale spatio-temporal point processes: novel machine learning methodologies and application to neural multi-electrode arrays.
大规模时空点过程:新颖的机器学习方法及其在神经多电极阵列中的应用。
  • 批准号:
    EP/L027208/1
  • 财政年份:
    2014
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
Computational reconstruction of stochastic regulation: from transcriptional modules to network remodelling
随机调节的计算重建:从转录模块到网络重塑
  • 批准号:
    BB/I024747/1
  • 财政年份:
    2011
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
Advancing Machine Learning Methodology for New Classes of Prediction Problems
推进新型预测问题的机器学习方法
  • 批准号:
    EP/F009461/2
  • 财政年份:
    2010
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
Carbon monoxide and metal carbonyl CO-releasing molecules (CORMs) as novel antimicrobial agents - a systems approach to cellular targets and effects
一氧化碳和金属羰基CO释放分子(CORM)作为新型抗菌剂——一种针对细胞靶标和效应的系统方法
  • 批准号:
    BB/H01702X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
Advancing Machine Learning Methodology for New Classes of Prediction Problems
推进新型预测问题的机器学习方法
  • 批准号:
    EP/F009461/1
  • 财政年份:
    2008
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
  • 批准号:
    2305735
  • 财政年份:
    2024
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Fellowship Award
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
  • 批准号:
    NE/Y001249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
Understanding freshwater ecosystem health from a microbial perspective
从微生物角度了解淡水生态系统健康
  • 批准号:
    2890049
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Studentship
Understanding how microbial communities respond to design and process engineering in wastewater treatment
了解微生物群落如何响应废水处理中的设计和工艺工程
  • 批准号:
    BB/Y003314/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
Understanding the impact of climate change and elevated CO2 on tree microbial diversity
了解气候变化和二氧化碳浓度升高对树木微生物多样性的影响
  • 批准号:
    2874934
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Studentship
Understanding robustness of microbial communities for bio-industry
了解生物工业微生物群落的稳健性
  • 批准号:
    2871386
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Studentship
Understanding the molecular mechanisms of Akkermansia glycan-binding adhesins in shaping microbial communities and balancing intestinal inflammation in response to host signals
了解阿克曼氏菌聚糖结合粘附素在塑造微生物群落和平衡肠道炎症以响应宿主信号方面的分子机制
  • 批准号:
    10723996
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
Understanding the transmission dynamics of norovirus with microbial data in wastewater and machine learning algorithms
利用废水中的微生物数据和机器学习算法了解诺如病毒的传播动力学
  • 批准号:
    22KJ2358
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Uncharacterised microbial pathways are key to understanding large fluxes of biogenic reactive nitrogen gases from agronomic soils
未知的微生物途径是了解农业土壤中大量生物活性氮气的关键
  • 批准号:
    BB/X002187/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了